File size: 2,906 Bytes
770a245 4e5658d 770a245 4e5658d 4d04310 4e5658d 69b4374 4e5658d 4d04310 4e5658d 770a245 4d04310 770a245 4d04310 69b4374 4d04310 770a245 f37cd14 770a245 4d04310 770a245 69b4374 770a245 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- ingredients_yes_no
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-ingredients
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: ingredients_yes_no
type: ingredients_yes_no
args: IngredientsYesNo
metrics:
- name: Precision
type: precision
value: 0.9898648648648649
- name: Recall
type: recall
value: 0.9932203389830508
- name: F1
type: f1
value: 0.9915397631133671
- name: Accuracy
type: accuracy
value: 0.9978308026030369
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ingredients
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ingredients_yes_no dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0105
- Precision: 0.9899
- Recall: 0.9932
- F1: 0.9915
- Accuracy: 0.9978
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 47 | 0.2783 | 0.4 | 0.5492 | 0.4629 | 0.8910 |
| No log | 2.0 | 94 | 0.1089 | 0.8145 | 0.8780 | 0.8450 | 0.9718 |
| No log | 3.0 | 141 | 0.0273 | 0.9865 | 0.9932 | 0.9899 | 0.9973 |
| No log | 4.0 | 188 | 0.0168 | 0.9865 | 0.9932 | 0.9899 | 0.9973 |
| No log | 5.0 | 235 | 0.0156 | 0.9865 | 0.9898 | 0.9882 | 0.9957 |
| No log | 6.0 | 282 | 0.0129 | 0.9865 | 0.9932 | 0.9899 | 0.9973 |
| No log | 7.0 | 329 | 0.0121 | 0.9899 | 0.9932 | 0.9915 | 0.9978 |
| No log | 8.0 | 376 | 0.0115 | 0.9899 | 0.9932 | 0.9915 | 0.9978 |
| No log | 9.0 | 423 | 0.0108 | 0.9899 | 0.9932 | 0.9915 | 0.9978 |
| No log | 10.0 | 470 | 0.0105 | 0.9899 | 0.9932 | 0.9915 | 0.9978 |
### Framework versions
- Transformers 4.10.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|