File size: 1,882 Bytes
32c3ecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c811d3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdf651e
c811d3e
 
 
 
 
 
cdf651e
c811d3e
 
cdf651e
c811d3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdf651e
c811d3e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
base_model: unsloth/llama-3-8b-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
---

# Uploaded  model

- **Developed by:** harithapliyal
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit

This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)

from google.colab import userdata
HF_KEY = userdata.get('HF_KEY')

from unsloth import FastLanguageModel
import torch

<!-- from transformers import TrainingArguments
from trl import SFTTrainer
from unsloth import is_bfloat16_supported

!pip uninstall -y xformers
!pip install xformers

!python -m xformers.info

!pip install triton -->

# Load model directly
from transformers import AutoModelForCausalLM, BitsAndBytesConfig

# Configure the quantization
```
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype="float16"
)
```

# Load the model with quantization
```
model1 = AutoModelForCausalLM.from_pretrained(
    "harithapliyal/llama-3-8b-bnb-4bit-finetuned-SentAnalysis", 
    quantization_config=bnb_config
)



FastLanguageModel.for_inference(model1) # Enable native 2x faster inference
inputs = tokenizer(
[
    fine_tuned_prompt.format(
        "Classify the sentiment of the following text.", # instruction
        "I like play yoga under the rain", # input
        "", # output - leave this blank for generation!
    )
], return_tensors = "pt").to("cuda")

outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
outputs = tokenizer.decode(outputs[0])
print(outputs)
```