happyme531's picture
Fix label
35aa782 verified
---
license: unknown
---
# 适用于RKNN2的Segment Anything模型
# Segment Anything Model for RKNN2 (English readme see below)
## 模型使用
- 安装RKNPU2 2.0.0b23版本运行库
- 在开发板上安装python-opencv, rknn-toolkit-lite2, onnxruntime等
- 从 https://huggingface.co/happyme531/segment-anything-rknn2 下载模型文件(`sam_vit_b_01ec64.pth.encoder.patched.onnx.rknn`,`sam_vit_b_01ec64.pth.decoder.onnx`)
- 执行run_sam_rknn.py即可
## 效果展示
输入:
![](input.jpg)
提示:
`{"type": "point", "data": [540, 512], "label": 1}`
输出:
![](output.jpg)
性能: RK3588,单NPU核心,耗时约22000ms
..性能瓶颈: Softmax太大,NPU无法执行
## 模型转换
- (使用RKNN-Toolkit2 2.0.0b23版本测试)
- 使用`https://github.com/vietanhdev/samexporter` 导出ONNX模型
- 编辑`convert_encoder.py`, 修改模型路径:
```
ONNX_MODEL="sam_vit_b_01ec64.pth.encoder.onnx"
```
- 执行`convert_encoder.py`
- 现在会输出一个rknn文件, 但它的执行速度非常慢(~120s), 因为模型结构需要调整
- 执行`patch_graph.py`, 会生成调整后的onnx文件
- 再次编辑`convert_encoder.py`, 修改模型路径, 执行转换即可
- decoder模型运行很快,因此无需转换,直接用onnxruntime cpu运行即可
# English readme
## Model Usage
- Install RKNPU2 2.0.0b23 version runtime library
- Install python-opencv, rknn-toolkit-lite2, onnxruntime, etc. on the development board
- Download model files from https://huggingface.co/happyme531/segment-anything-rknn2 (`sam_vit_b_01ec64.pth.encoder.patched.onnx.rknn`, `sam_vit_b_01ec64.pth.decoder.onnx`)
- Execute run_sam_rknn.py
## Demo
Input:
![](input.jpg)
Prompt:
`{"type": "point", "data": [540, 512], "label": 1}`
Output:
![](output.jpg)
Performance: RK3588, single NPU core, takes about 22000ms
..Performance bottleneck: Softmax is too large, NPU cannot execute
## Model Conversion
- (Tested with RKNN-Toolkit2 2.0.0b23 version)
- Use `https://github.com/vietanhdev/samexporter` to export ONNX model
- Edit `convert_encoder.py`, modify the model path:
```
ONNX_MODEL="sam_vit_b_01ec64.pth.encoder.onnx"
```
- Execute `convert_encoder.py`
- Now it will output an rknn file, but its execution speed is very slow (~120s) because the model structure needs adjustment
- Execute `patch_graph.py`, which will generate an adjusted onnx file
- Edit `convert_encoder.py` again, modify the model path, and execute the conversion
- The decoder model runs quickly, so there's no need for conversion. It can be run directly using onnxruntime CPU.