--- license: unknown --- # 适用于RKNN2的Segment Anything模型 # Segment Anything Model for RKNN2 (English readme see below) ## 模型使用 - 安装RKNPU2 2.0.0b23版本运行库 - 在开发板上安装python-opencv, rknn-toolkit-lite2, onnxruntime等 - 从 https://huggingface.co/happyme531/segment-anything-rknn2 下载模型文件(`sam_vit_b_01ec64.pth.encoder.patched.onnx.rknn`,`sam_vit_b_01ec64.pth.decoder.onnx`) - 执行run_sam_rknn.py即可 ## 效果展示 输入: ![](input.jpg) 提示: `{"type": "point", "data": [540, 512], "label": 1}` 输出: ![](output.jpg) 性能: RK3588,单NPU核心,耗时约22000ms ..性能瓶颈: Softmax太大,NPU无法执行 ## 模型转换 - (使用RKNN-Toolkit2 2.0.0b23版本测试) - 使用`https://github.com/vietanhdev/samexporter` 导出ONNX模型 - 编辑`convert_encoder.py`, 修改模型路径: ``` ONNX_MODEL="sam_vit_b_01ec64.pth.encoder.onnx" ``` - 执行`convert_encoder.py` - 现在会输出一个rknn文件, 但它的执行速度非常慢(~120s), 因为模型结构需要调整 - 执行`patch_graph.py`, 会生成调整后的onnx文件 - 再次编辑`convert_encoder.py`, 修改模型路径, 执行转换即可 - decoder模型运行很快,因此无需转换,直接用onnxruntime cpu运行即可 # English readme ## Model Usage - Install RKNPU2 2.0.0b23 version runtime library - Install python-opencv, rknn-toolkit-lite2, onnxruntime, etc. on the development board - Download model files from https://huggingface.co/happyme531/segment-anything-rknn2 (`sam_vit_b_01ec64.pth.encoder.patched.onnx.rknn`, `sam_vit_b_01ec64.pth.decoder.onnx`) - Execute run_sam_rknn.py ## Demo Input: ![](input.jpg) Prompt: `{"type": "point", "data": [540, 512], "label": 1}` Output: ![](output.jpg) Performance: RK3588, single NPU core, takes about 22000ms ..Performance bottleneck: Softmax is too large, NPU cannot execute ## Model Conversion - (Tested with RKNN-Toolkit2 2.0.0b23 version) - Use `https://github.com/vietanhdev/samexporter` to export ONNX model - Edit `convert_encoder.py`, modify the model path: ``` ONNX_MODEL="sam_vit_b_01ec64.pth.encoder.onnx" ``` - Execute `convert_encoder.py` - Now it will output an rknn file, but its execution speed is very slow (~120s) because the model structure needs adjustment - Execute `patch_graph.py`, which will generate an adjusted onnx file - Edit `convert_encoder.py` again, modify the model path, and execute the conversion - The decoder model runs quickly, so there's no need for conversion. It can be run directly using onnxruntime CPU.