File size: 29,248 Bytes
1df274b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 |
import argparse
import json
import time
import PIL
from diffusers import StableDiffusionPipeline
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.schedulers import (
LCMScheduler
)
from diffusers.schedulers.scheduling_utils import SchedulerMixin
import gc
import inspect
import logging
logging.basicConfig()
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
import numpy as np
import os
import torch # Only used for `torch.from_tensor` in `pipe.scheduler.step()`
from transformers import CLIPFeatureExtractor, CLIPTokenizer
from typing import Callable, List, Optional, Union, Tuple
from PIL import Image
# from rknnlite.api import RKNNLite
# class RKNN2Model:
# """ Wrapper for running RKNPU2 models """
# def __init__(self, model_path):
# logger.info(f"Loading {model_path}")
# start = time.time()
# assert os.path.exists(model_path) and model_path.endswith(".rknn")
# self.rknnlite = RKNNLite()
# self.rknnlite.load_rknn(model_path)
# self.rknnlite.init_runtime(core_mask=RKNNLite.NPU_CORE_AUTO) # Multi-core will cause kernel crash
# load_time = time.time() - start
# logger.info(f"Done. Took {load_time:.1f} seconds.")
# self.modelname = model_path.split("/")[-1]
# self.inference_time = 0
# def __call__(self, **kwargs) -> List[np.ndarray]:
# np.savez(f"{self.modelname}_input_{self.inference_time}.npz", **kwargs)
# #print(kwargs)
# input_list = [value for key, value in kwargs.items()]
# for i, input in enumerate(input_list):
# if isinstance(input, np.ndarray):
# print(f"input {i} shape: {input.shape}")
# results = self.rknnlite.inference(inputs=input_list)
# for res in results:
# print(f"output shape: {res.shape}")
# return results
import onnxruntime as ort
class RKNN2Model:
""" Wrapper for running ONNX models """
def __init__(self, model_dir):
logger.info(f"Loading {model_dir}")
start = time.time()
self.config = json.load(open(os.path.join(model_dir, "config.json")))
assert os.path.exists(model_dir) and os.path.exists(os.path.join(model_dir, "model.onnx"))
self.session = ort.InferenceSession(os.path.join(model_dir, "model.onnx"))
load_time = time.time() - start
logger.info(f"Done. Took {load_time:.1f} seconds.")
self.modelname = model_dir.split("/")[-1]
self.inference_time = 0
def __call__(self, **kwargs) -> List[np.ndarray]:
# np.savez(f"onnx_out/{self.modelname}_input_{self.inference_time}.npz", **kwargs)
self.inference_time += 1
results = self.session.run(None, kwargs)
results_list = []
for res in results:
results_list.append(res)
return results
class RKNN2StableDiffusionPipeline(DiffusionPipeline):
""" RKNN2 version of
`diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline`
"""
def __init__(
self,
text_encoder: RKNN2Model,
unet: RKNN2Model,
vae_decoder: RKNN2Model,
scheduler: LCMScheduler,
tokenizer: CLIPTokenizer,
force_zeros_for_empty_prompt: Optional[bool] = True,
feature_extractor: Optional[CLIPFeatureExtractor] = None,
text_encoder_2: Optional[RKNN2Model] = None,
tokenizer_2: Optional[CLIPTokenizer] = None
):
super().__init__()
# Register non-Core ML components of the pipeline similar to the original pipeline
self.register_modules(
tokenizer=tokenizer,
scheduler=scheduler,
feature_extractor=feature_extractor,
)
self.force_zeros_for_empty_prompt = force_zeros_for_empty_prompt
self.safety_checker = None
# Register Core ML components of the pipeline
self.text_encoder = text_encoder
self.text_encoder_2 = text_encoder_2
self.tokenizer_2 = tokenizer_2
self.unet = unet
self.vae_decoder = vae_decoder
VAE_DECODER_UPSAMPLE_FACTOR = 8
# In PyTorch, users can determine the tensor shapes dynamically by default
# In CoreML, tensors have static shapes unless flexible shapes were used during export
# See https://coremltools.readme.io/docs/flexible-inputs
latent_h, latent_w = 32, 32 # hallo1: FIXME: hardcoded value
self.height = latent_h * VAE_DECODER_UPSAMPLE_FACTOR
self.width = latent_w * VAE_DECODER_UPSAMPLE_FACTOR
self.vae_scale_factor = VAE_DECODER_UPSAMPLE_FACTOR
logger.info(
f"Stable Diffusion configured to generate {self.height}x{self.width} images"
)
@staticmethod
def postprocess(
image: np.ndarray,
output_type: str = "pil",
do_denormalize: Optional[List[bool]] = None,
):
def numpy_to_pil(images: np.ndarray):
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
else:
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def denormalize(images: np.ndarray):
"""
Denormalize an image array to [0,1].
"""
return np.clip(images / 2 + 0.5, 0, 1)
if not isinstance(image, np.ndarray):
raise ValueError(
f"Input for postprocessing is in incorrect format: {type(image)}. We only support np array"
)
if output_type not in ["latent", "np", "pil"]:
deprecation_message = (
f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
"`pil`, `np`, `pt`, `latent`"
)
logger.warning(deprecation_message)
output_type = "np"
if output_type == "latent":
return image
if do_denormalize is None:
raise ValueError("do_denormalize is required for postprocessing")
image = np.stack(
[denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])], axis=0
)
image = image.transpose((0, 2, 3, 1))
if output_type == "pil":
image = numpy_to_pil(image)
return image
def _encode_prompt(
self,
prompt: Union[str, List[str]],
num_images_per_prompt: int,
do_classifier_free_guidance: bool,
negative_prompt: Optional[Union[str, list]],
prompt_embeds: Optional[np.ndarray] = None,
negative_prompt_embeds: Optional[np.ndarray] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`Union[str, List[str]]`):
prompt to be encoded
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`Optional[Union[str, list]]`):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
prompt_embeds (`Optional[np.ndarray]`, defaults to `None`):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`Optional[np.ndarray]`, defaults to `None`):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
"""
if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="np",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="np").input_ids
if not np.array_equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
prompt_embeds = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0]
prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt] * batch_size
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="np",
)
negative_prompt_embeds = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0]
if do_classifier_free_guidance:
negative_prompt_embeds = np.repeat(negative_prompt_embeds, num_images_per_prompt, axis=0)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = np.concatenate([negative_prompt_embeds, prompt_embeds])
return prompt_embeds
# Copied from https://github.com/huggingface/diffusers/blob/v0.17.1/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L217
def check_inputs(
self,
prompt: Union[str, List[str]],
height: Optional[int],
width: Optional[int],
callback_steps: int,
negative_prompt: Optional[str] = None,
prompt_embeds: Optional[np.ndarray] = None,
negative_prompt_embeds: Optional[np.ndarray] = None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
# Adapted from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
if isinstance(generator, np.random.RandomState):
latents = generator.randn(*shape).astype(dtype)
elif isinstance(generator, torch.Generator):
latents = torch.randn(*shape, generator=generator).numpy().astype(dtype)
else:
raise ValueError(
f"Expected `generator` to be of type `np.random.RandomState` or `torch.Generator`, but got"
f" {type(generator)}."
)
elif latents.shape != shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * np.float64(self.scheduler.init_noise_sigma)
return latents
# Adapted from https://github.com/huggingface/diffusers/blob/v0.22.0/src/diffusers/pipelines/latent_consistency/pipeline_latent_consistency.py#L264
def __call__(
self,
prompt: Union[str, List[str]] = "",
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 4,
original_inference_steps: int = None,
guidance_scale: float = 8.5,
num_images_per_prompt: int = 1,
generator: Optional[Union[np.random.RandomState, torch.Generator]] = None,
latents: Optional[np.ndarray] = None,
prompt_embeds: Optional[np.ndarray] = None,
output_type: str = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
callback_steps: int = 1,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`Optional[Union[str, List[str]]]`, defaults to None):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
height (`Optional[int]`, defaults to None):
The height in pixels of the generated image.
width (`Optional[int]`, defaults to None):
The width in pixels of the generated image.
num_inference_steps (`int`, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_images_per_prompt (`int`, defaults to 1):
The number of images to generate per prompt.
generator (`Optional[Union[np.random.RandomState, torch.Generator]]`, defaults to `None`):
A np.random.RandomState to make generation deterministic.
latents (`Optional[np.ndarray]`, defaults to `None`):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`Optional[np.ndarray]`, defaults to `None`):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
output_type (`str`, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (Optional[Callable], defaults to `None`):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
guidance_rescale (`float`, defaults to 0.0):
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
Guidance rescale factor should fix overexposure when using zero terminal SNR.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
height = height or self.unet.config["sample_size"] * self.vae_scale_factor
width = width or self.unet.config["sample_size"] * self.vae_scale_factor
# Don't need to get negative prompts due to LCM guided distillation
negative_prompt = None
negative_prompt_embeds = None
# check inputs. Raise error if not correct
self.check_inputs(
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
)
# define call parameters
if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if generator is None:
generator = np.random.RandomState()
prompt_embeds = self._encode_prompt(
prompt,
num_images_per_prompt,
False,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
# set timesteps
self.scheduler.set_timesteps(num_inference_steps, original_inference_steps=original_inference_steps)
timesteps = self.scheduler.timesteps
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
self.unet.config["in_channels"],
height,
width,
prompt_embeds.dtype,
generator,
latents,
)
bs = batch_size * num_images_per_prompt
# get Guidance Scale Embedding
w = np.full(bs, guidance_scale - 1, dtype=prompt_embeds.dtype)
w_embedding = self.get_guidance_scale_embedding(
w, embedding_dim=self.unet.config["time_cond_proj_dim"], dtype=prompt_embeds.dtype
)
# Adapted from diffusers to extend it for other runtimes than ORT
timestep_dtype = np.int64
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
for i, t in enumerate(self.progress_bar(timesteps)):
timestep = np.array([t], dtype=timestep_dtype)
noise_pred = self.unet(
sample=latents,
timestep=timestep,
encoder_hidden_states=prompt_embeds,
timestep_cond=w_embedding,
)[0]
# compute the previous noisy sample x_t -> x_t-1
latents, denoised = self.scheduler.step(
torch.from_numpy(noise_pred), t, torch.from_numpy(latents), return_dict=False
)
latents, denoised = latents.numpy(), denoised.numpy()
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if output_type == "latent":
image = denoised
has_nsfw_concept = None
else:
denoised /= self.vae_decoder.config["scaling_factor"]
# it seems likes there is a strange result for using half-precision vae decoder if batchsize>1
image = np.concatenate(
[self.vae_decoder(latent_sample=denoised[i : i + 1])[0] for i in range(denoised.shape[0])]
)
# image, has_nsfw_concept = self.run_safety_checker(image)
has_nsfw_concept = None # skip safety checker
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
# Adapted from https://github.com/huggingface/diffusers/blob/v0.22.0/src/diffusers/pipelines/latent_consistency/pipeline_latent_consistency.py#L264
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=None):
"""
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
Args:
timesteps (`torch.Tensor`):
generate embedding vectors at these timesteps
embedding_dim (`int`, *optional*, defaults to 512):
dimension of the embeddings to generate
dtype:
data type of the generated embeddings
Returns:
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
"""
w = w * 1000
half_dim = embedding_dim // 2
emb = np.log(10000.0) / (half_dim - 1)
emb = np.exp(np.arange(half_dim, dtype=dtype) * -emb)
emb = w[:, None] * emb[None, :]
emb = np.concatenate([np.sin(emb), np.cos(emb)], axis=1)
if embedding_dim % 2 == 1: # zero pad
emb = np.pad(emb, [(0, 0), (0, 1)])
assert emb.shape == (w.shape[0], embedding_dim)
return emb
def get_image_path(args, **override_kwargs):
""" mkdir output folder and encode metadata in the filename
"""
out_folder = os.path.join(args.o, "_".join(args.prompt.replace("/", "_").rsplit(" ")))
os.makedirs(out_folder, exist_ok=True)
out_fname = f"randomSeed_{override_kwargs.get('seed', None) or args.seed}"
out_fname += f"_LCM_"
out_fname += f"_numInferenceSteps{override_kwargs.get('num_inference_steps', None) or args.num_inference_steps}"
out_fname += "_onnx_"
return os.path.join(out_folder, out_fname + ".png")
def prepare_controlnet_cond(image_path, height, width):
image = Image.open(image_path).convert("RGB")
image = image.resize((height, width), resample=Image.LANCZOS)
image = np.array(image).transpose(2, 0, 1) / 255.0
return image
def main(args):
logger.info(f"Setting random seed to {args.seed}")
# load scheduler from /scheduler/scheduler_config.json
scheduler_config_path = os.path.join(args.i, "scheduler/scheduler_config.json")
with open(scheduler_config_path, "r") as f:
scheduler_config = json.load(f)
user_specified_scheduler = LCMScheduler.from_config(scheduler_config)
print("user_specified_scheduler", user_specified_scheduler)
pipe = RKNN2StableDiffusionPipeline(
text_encoder=RKNN2Model(os.path.join(args.i, "text_encoder")),
unet=RKNN2Model(os.path.join(args.i, "unet")),
vae_decoder=RKNN2Model(os.path.join(args.i, "vae_decoder")),
scheduler=user_specified_scheduler,
tokenizer=CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch16"),
)
logger.info("Beginning image generation.")
image = pipe(
prompt=args.prompt,
height=int(args.size.split("x")[0]),
width=int(args.size.split("x")[1]),
num_inference_steps=args.num_inference_steps,
guidance_scale=args.guidance_scale,
generator=np.random.RandomState(args.seed),
)
out_path = get_image_path(args)
logger.info(f"Saving generated image to {out_path}")
image["images"][0].save(out_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt",
required=True,
help="The text prompt to be used for text-to-image generation.")
parser.add_argument(
"-i",
required=True,
help=("Path to model directory"))
parser.add_argument("-o", required=True)
parser.add_argument("--seed",
default=93,
type=int,
help="Random seed to be able to reproduce results")
parser.add_argument(
"-s",
"--size",
default="256x256",
type=str,
help="Image size")
parser.add_argument(
"--num-inference-steps",
default=4,
type=int,
help="The number of iterations the unet model will be executed throughout the reverse diffusion process")
parser.add_argument(
"--guidance-scale",
default=7.5,
type=float,
help="Controls the influence of the text prompt on sampling process (0=random images)")
args = parser.parse_args()
main(args) |