happyme531's picture
Upload 12 files
50704de verified
|
raw
history blame
4.54 kB
# Segment Anything 2.1 RKNN2
## (English README see below)
在RK3588上运行强大的Segment Anything 2.1图像分割模型!
- 推理速度(RK3588):
- Encoder(Tiny)(单NPU核): 3s
- Encoder(Small)(单NPU核): 3.5s
- Encoder(Large)(单NPU核): 12s
- Decoder(CPU): 0.1s
- 内存占用(RK3588):
- Encoder(Tiny): 0.95GB
- Encoder(Small): 1.1GB
- Encoder(Large): 4.1GB
- Decoder: 非常小, 可以忽略不计
## 使用方法
1. 克隆或者下载此仓库到本地. 模型较大, 请确保有足够的磁盘空间.
2. 安装依赖
```bash
pip install numpy<2 pillow matplotlib opencv-python onnxruntime rknn-toolkit-lite2
```
3. 运行
```bash
python test_rknn.py
```
你可以修改`test_rknn.py`中这一部分
```python
def main():
# 1. 加载原始图片
path = "dog.jpg"
orig_image, input_image, (scale, offset_x, offset_y) = load_image(path)
decoder_path = "sam2.1_hiera_small_decoder.onnx"
encoder_path = "sam2.1_hiera_small_encoder.rknn"
...
```
来测试不同的模型和图片. 注意, 和SAM1不同, 这里的encoder和decoder必须使用同一个版本的模型.
## 模型转换
1. 安装依赖
```bash
pip install numpy<2 onnxslim onnxruntime rknn-toolkit2 sam2
```
2. 下载SAM2.1的pt模型文件. 可以从[这里](https://github.com/facebookresearch/sam2?tab=readme-ov-file#model-description)下载.
3. 转换pt模型到onnx模型. 以Tiny模型为例:
```bash
python ./export_onnx.py --model_type sam2.1_hiera_tiny --checkpoint ./sam2.1_hiera_tiny.pt --output_encoder ./sam2.1_hiera_tiny_encoder.onnx --output_decoder sam2.1_hiera_tiny_decoder.onnx
```
4. 将onnx模型转换为rknn模型. 以Tiny模型为例:
```bash
python ./convert_rknn.py sam2.1_hiera_tiny
```
如果在常量折叠时报错, 请尝试更新onnxruntime到最新版本.
## 已知问题
- 只实现了图片分割, 没有实现视频分割.
- 由于RKNN-Toolkit2的问题, decoder模型在转换时会报错, 暂时需要使用CPU onnxruntime运行, 会略微增加CPU占用.
## 参考
- [samexporter/export_sam21_cvat.py](https://github.com/hashJoe/samexporter/blob/cvat/samexporter/export_sam21_cvat.py)
- [SAM 2](https://github.com/facebookresearch/sam2)
## English README
Run the powerful Segment Anything 2.1 image segmentation model on RK3588!
- Inference Speed (RK3588):
- Encoder(Tiny)(Single NPU Core): 3s
- Encoder(Small)(Single NPU Core): 3.5s
- Encoder(Large)(Single NPU Core): 12s
- Decoder(CPU): 0.1s
- Memory Usage (RK3588):
- Encoder(Tiny): 0.95GB
- Encoder(Small): 1.1GB
- Encoder(Large): 4.1GB
- Decoder: Negligible
## Usage
1. Clone or download this repository. Models are large, please ensure sufficient disk space.
2. Install dependencies
```bash
pip install numpy<2 pillow matplotlib opencv-python onnxruntime rknn-toolkit-lite2
```
3. Run
```bash
python test_rknn.py
```
You can modify this part in `test_rknn.py`
```python
def main():
# 1. Load original image
path = "dog.jpg"
orig_image, input_image, (scale, offset_x, offset_y) = load_image(path)
decoder_path = "sam2.1_hiera_small_decoder.onnx"
encoder_path = "sam2.1_hiera_small_encoder.rknn"
...
```
to test different models and images. Note that unlike SAM1, the encoder and decoder must use the same version of the model.
## Model Conversion
1. Install dependencies
```bash
pip install numpy<2 onnxslim onnxruntime rknn-toolkit2 sam2
```
2. Download SAM2.1 pt model files. You can download them from [here](https://github.com/facebookresearch/sam2?tab=readme-ov-file#model-description).
3. Convert pt models to onnx models. Taking Tiny model as an example:
```bash
python ./export_onnx.py --model_type sam2.1_hiera_tiny --checkpoint ./sam2.1_hiera_tiny.pt --output_encoder ./sam2.1_hiera_tiny_encoder.onnx --output_decoder sam2.1_hiera_tiny_decoder.onnx
```
4. Convert onnx models to rknn models. Taking Tiny model as an example:
```bash
python ./convert_rknn.py sam2.1_hiera_tiny
```
If you encounter errors during constant folding, try updating onnxruntime to the latest version.
## Known Issues
- Only image segmentation is implemented, video segmentation is not supported.
- Due to issues with RKNN-Toolkit2, the decoder model conversion will fail. Currently, it needs to run on CPU using onnxruntime, which will slightly increase CPU usage.
## References
- [samexporter/export_sam21_cvat.py](https://github.com/hashJoe/samexporter/blob/cvat/samexporter/export_sam21_cvat.py)
- [SAM 2](https://github.com/facebookresearch/sam2)