happyme531's picture
Upload 12 files
50704de verified
|
raw
history blame
4.54 kB

Segment Anything 2.1 RKNN2

(English README see below)

在RK3588上运行强大的Segment Anything 2.1图像分割模型!

  • 推理速度(RK3588):

    • Encoder(Tiny)(单NPU核): 3s
    • Encoder(Small)(单NPU核): 3.5s
    • Encoder(Large)(单NPU核): 12s
    • Decoder(CPU): 0.1s
  • 内存占用(RK3588):

    • Encoder(Tiny): 0.95GB
    • Encoder(Small): 1.1GB
    • Encoder(Large): 4.1GB
    • Decoder: 非常小, 可以忽略不计

使用方法

  1. 克隆或者下载此仓库到本地. 模型较大, 请确保有足够的磁盘空间.

  2. 安装依赖

pip install numpy<2 pillow matplotlib opencv-python onnxruntime rknn-toolkit-lite2
  1. 运行
python test_rknn.py

你可以修改test_rknn.py中这一部分

def main():
    # 1. 加载原始图片
    path = "dog.jpg"
    orig_image, input_image, (scale, offset_x, offset_y) = load_image(path)
    decoder_path = "sam2.1_hiera_small_decoder.onnx"
    encoder_path = "sam2.1_hiera_small_encoder.rknn"
    ...

来测试不同的模型和图片. 注意, 和SAM1不同, 这里的encoder和decoder必须使用同一个版本的模型.

模型转换

  1. 安装依赖
pip install numpy<2 onnxslim onnxruntime rknn-toolkit2 sam2
  1. 下载SAM2.1的pt模型文件. 可以从这里下载.

  2. 转换pt模型到onnx模型. 以Tiny模型为例:

python ./export_onnx.py --model_type sam2.1_hiera_tiny --checkpoint ./sam2.1_hiera_tiny.pt --output_encoder ./sam2.1_hiera_tiny_encoder.onnx --output_decoder sam2.1_hiera_tiny_decoder.onnx
  1. 将onnx模型转换为rknn模型. 以Tiny模型为例:
python ./convert_rknn.py sam2.1_hiera_tiny

如果在常量折叠时报错, 请尝试更新onnxruntime到最新版本.

已知问题

  • 只实现了图片分割, 没有实现视频分割.
  • 由于RKNN-Toolkit2的问题, decoder模型在转换时会报错, 暂时需要使用CPU onnxruntime运行, 会略微增加CPU占用.

参考

English README

Run the powerful Segment Anything 2.1 image segmentation model on RK3588!

  • Inference Speed (RK3588):

    • Encoder(Tiny)(Single NPU Core): 3s
    • Encoder(Small)(Single NPU Core): 3.5s
    • Encoder(Large)(Single NPU Core): 12s
    • Decoder(CPU): 0.1s
  • Memory Usage (RK3588):

    • Encoder(Tiny): 0.95GB
    • Encoder(Small): 1.1GB
    • Encoder(Large): 4.1GB
    • Decoder: Negligible

Usage

  1. Clone or download this repository. Models are large, please ensure sufficient disk space.

  2. Install dependencies

pip install numpy<2 pillow matplotlib opencv-python onnxruntime rknn-toolkit-lite2
  1. Run
python test_rknn.py

You can modify this part in test_rknn.py

def main():
    # 1. Load original image
    path = "dog.jpg"
    orig_image, input_image, (scale, offset_x, offset_y) = load_image(path)
    decoder_path = "sam2.1_hiera_small_decoder.onnx"
    encoder_path = "sam2.1_hiera_small_encoder.rknn"
    ...

to test different models and images. Note that unlike SAM1, the encoder and decoder must use the same version of the model.

Model Conversion

  1. Install dependencies
pip install numpy<2 onnxslim onnxruntime rknn-toolkit2 sam2
  1. Download SAM2.1 pt model files. You can download them from here.

  2. Convert pt models to onnx models. Taking Tiny model as an example:

python ./export_onnx.py --model_type sam2.1_hiera_tiny --checkpoint ./sam2.1_hiera_tiny.pt --output_encoder ./sam2.1_hiera_tiny_encoder.onnx --output_decoder sam2.1_hiera_tiny_decoder.onnx
  1. Convert onnx models to rknn models. Taking Tiny model as an example:
python ./convert_rknn.py sam2.1_hiera_tiny

If you encounter errors during constant folding, try updating onnxruntime to the latest version.

Known Issues

  • Only image segmentation is implemented, video segmentation is not supported.
  • Due to issues with RKNN-Toolkit2, the decoder model conversion will fail. Currently, it needs to run on CPU using onnxruntime, which will slightly increase CPU usage.

References