File size: 9,396 Bytes
2e9807d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb2212a
2e9807d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb2212a
2e9807d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb2212a
 
2e9807d
 
 
fb2212a
2e9807d
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from typing import Union

import numpy as np
import torch
import torchaudio
import torch.nn as nn
import torchaudio.transforms as transforms
from transformers import PretrainedConfig, PreTrainedModel

import dac
from audiotools import AudioSignal

from utils import freeze


class DACConfig(PretrainedConfig):
    model_type = 'dac'

    def __init__(self, 

                 model_type_by_sampling_freq:str='44khz',

                 encoding_chunk_size_in_sec:int=1,

                 decoding_chunk_rate:float=0.1,

                 decoding_overlap_rate:float=0.1,

                 **kwargs):
        super().__init__(**kwargs)
        """

        Initializes the model object.

        Args:

            model_type_by_sampling_freq (str, optional): The model type based on the sampling frequency. Defaults to '44khz'. Choose among ['44khz', '24khz', '16khz']

            encoding_chunk_size_in_sec (int, optional): The size of the encoding chunk in seconds. Defaults to 1.

            decoding_chunk_rate (float, optional): The decoding chunk rate. Must be between 0 and 1. Defaults to 0.1.

            decoding_overlap_rate (float, optional): The decoding overlap rate. Must be between 0 and 1. Defaults to 0.1.

            **kwargs: Additional keyword arguments.

        Raises:

            AssertionError: If the model_type_by_sampling_freq is not one of ['44khz', '24khz', '16khz'].

            AssertionError: If the decoding_chunk_rate is not between 0 and 1.

            AssertionError: If the decoding_overlap_rate is not between 0 and 1.

        """
        self.model_type_by_sampling_freq = model_type_by_sampling_freq
        self.encoding_chunk_size_in_sec = encoding_chunk_size_in_sec
        self.decoding_chunk_rate = decoding_chunk_rate
        self.decoding_overlap_rate = decoding_overlap_rate

        assert model_type_by_sampling_freq.lower() in ['44khz', '24khz', '16khz']
        assert decoding_chunk_rate > 0 and decoding_chunk_rate <= 1.0, '`decoding_chunk_rate` must be bewteen 0 and 1.'
        assert decoding_overlap_rate >= 0 and decoding_overlap_rate < 1.0, '`decoding_overlap_rate` must be bewteen 0 and 1.'



class DAC(PreTrainedModel):
    config_class = DACConfig

    def __init__(self, config):
        super().__init__(config)

        self.model_type_by_sampling_freq = config.model_type_by_sampling_freq.lower()
        self.model_type_by_sampling_freq_int = {'44khz':44100, '24khz':24000, '16khz':16000}[self.model_type_by_sampling_freq]
        self.encoding_chunk_size_in_sec = config.encoding_chunk_size_in_sec
        self.decoding_chunk_rate = config.decoding_chunk_rate
        self.decoding_overlap_rate = config.decoding_overlap_rate


        dac_path = dac.utils.download(model_type=self.model_type_by_sampling_freq)
        self.dac = dac.DAC.load(dac_path)
        self.dac.eval()
        freeze(self.dac)

        self.downsampling_rate = int(np.prod(self.dac.encoder_rates))  # 512
    
    def load_audio(self, filename:str):
        waveform, sample_rate = torchaudio.load(filename)  # waveform: (n_channels, length); sample_rate: const.
        return waveform, sample_rate
    
    def resample_audio(self, waveform:torch.FloatTensor, orig_sr:int, target_sr:int):
        """

        - sr: sampling rate

        - waveform: (n_channels, length)

        """
        if orig_sr == target_sr:
            return waveform

        converter = transforms.Resample(orig_freq=orig_sr, new_freq=target_sr)
        waveform = converter(waveform)  # (n_channels, new_length)
        return waveform  # (n_channels, new_length)

    def to_mono_channel(self, waveform:torch.FloatTensor):
        """

        - waveform: (n_channels, length)

        """
        n_channels = waveform.shape[0]
        if n_channels > 1:
            waveform = torch.mean(waveform, dim=0, keepdim=True)  # (1, length)
        return waveform  # (1, length)
    
    @torch.no_grad()
    def encode(self, audio_fname:str):
        self.eval()

        waveform, sr = self.load_audio(audio_fname)
        waveform = self.resample_audio(waveform, orig_sr=sr, target_sr=self.model_type_by_sampling_freq_int)
        sr = self.model_type_by_sampling_freq_int
        waveform = self.to_mono_channel(waveform)  # DAC accepts a mono channel only.
        
        zq, s = self._chunk_encoding(waveform, sr)
        return zq, s

    def _chunk_encoding(self, waveform:torch.FloatTensor, sr:int):
        # TODO: can I make it parallel?
        """

        waveform: (c l)

        """
        x = waveform  # brief varname
        x = x.unsqueeze(1)  # (b 1 l); add a null batch dim
        chunk_size = int(self.encoding_chunk_size_in_sec * sr)

        # adjust `chunk_size` to prevent any padding in `dac.preprocess`, which causes a gap between the mini-batches in the resulting music.
        remainer = chunk_size % self.dac.hop_length
        chunk_size = chunk_size-remainer

        # process
        zq_list, s_list = [], []
        audio_length = x.shape[-1]
        for start in range(0, audio_length, chunk_size):
            end = start + chunk_size
            chunk = x[:, :, start:end]
            chunk = self.dac.preprocess(chunk, sr)
            zq, s, _, _, _ = self.dac.encode(chunk.to(self.device))
            zq = zq.cpu()
            s = s.cpu()
            """

            "zq" : Tensor[B x D x T]

                Quantized continuous representation of input

                = summation of all the residual quantized vectors across every rvq level

                = E(x) = z = \sum_n^N{zq_n} where N is the number of codebooks

            "s" : Tensor[B x N x T]

                Codebook indices for each codebook

                (quantized discrete representation of input)

                *first element in the N dimension = first RVQ level

            """
            zq_list.append(zq)
            s_list.append(s)
            torch.cuda.empty_cache()
        
        zq = torch.cat(zq_list, dim=2).float()  # (1, d, length)
        s = torch.cat(s_list, dim=2).long()  # (1, n_rvq, length)

        return zq, s
    
    @torch.no_grad()
    def decode(self, *, zq:Union[torch.FloatTensor,None]=None, s:Union[torch.IntTensor,None]=None):
        """

        zq: (b, d, length)

        """
        if isinstance(zq,type(None)) and isinstance(s,type(None)):
            assert False, 'one of them must be valid.'
        self.eval()

        if not isinstance(zq,type(None)):
            waveform = self._chunk_decoding(zq)  # (b, 1, length); output always has a mono-channel.
        if not isinstance(s,type(None)):
            zq = self.code_to_zq(s)
            waveform = self._chunk_decoding(zq)  # (b, 1, length); output always has a mono-channel.

        return waveform
    
    def _chunk_decoding(self, zq:torch.FloatTensor):
        """

        zq: (b, d, length)

        """
        length = zq.shape[-1]
        chunk_size = round(int(self.decoding_chunk_rate * length))
        overlap_size = round(self.decoding_overlap_rate * chunk_size)  # overlap size in terms of token length
        overlap_size_in_data_space = round(overlap_size * self.downsampling_rate)
        waveform_concat = None
        for start in range(0, length, chunk_size-overlap_size):
            end = start + chunk_size
            chunk = zq[:,:, start:end]  # (b, d, chunk_size)
            waveform = self.dac.decode(chunk.to(self.device))  # (b, 1, chunk_size*self.downsampling_rate)
            waveform = waveform.cpu()
            
            if isinstance(waveform_concat, type(None)):
                waveform_concat = waveform.clone()
            else:
                if self.decoding_overlap_rate != 0.:
                    prev_x = waveform_concat[:,:,:-overlap_size_in_data_space]
                    rest_of_new_x = waveform[:,:,overlap_size_in_data_space:]
                    overlap_x_from_prev_x = waveform_concat[:,:,-overlap_size_in_data_space:]  # (b, 1, overlap_size_in_data_space)
                    overlap_x_from_new_x = waveform[:,:,:overlap_size_in_data_space]  # (b, 1, overlap_size_in_data_space)
                    overlap = (overlap_x_from_prev_x + overlap_x_from_new_x) / 2  # take mean; maybe there's a better strategy but it seems to work fine.
                    waveform_concat = torch.cat((prev_x, overlap, rest_of_new_x), dim=-1)  # (b, 1, ..)
                else:
                    prev_x = waveform_concat
                    rest_of_new_x = waveform
                    waveform_concat = torch.cat((prev_x, rest_of_new_x), dim=-1)  # (b, 1, ..)
        return waveform_concat  # (b, 1, length)

    def code_to_zq(self, s:torch.IntTensor):
        """

        s: (b, n_rvq, length)

        """
        zq, _, _ = self.dac.quantizer.from_codes(s.to(self.device))  # zq: (b, d, length)
        zq = zq.cpu()
        return zq

    def save_tensor(self, tensor:torch.Tensor, fname:str) -> None:
        torch.save(tensor.cpu(), fname)
    
    def load_tensor(self, fname:str):
        return torch.load(fname)
    
    def waveform_to_audiofile(self, waveform:torch.FloatTensor, fname:str) -> None:
        AudioSignal(waveform, sample_rate=self.model_type_by_sampling_freq_int).write(fname)