File size: 8,830 Bytes
9c909e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
from datasets import Dataset, DatasetDict, Image
import pandas as pd
import os

import torch
from peft import LoraConfig
from transformers import AutoProcessor, BitsAndBytesConfig
from transformers import AutoModelForCausalLM, AutoModelForVision2Seq
from datetime import datetime
import evaluate
from transformers import TrainingArguments, Trainer, Seq2SeqTrainer, Seq2SeqTrainingArguments
from sklearn.model_selection import train_test_split

import random

class MyDataCollator:
    def __init__(self, processor):
        self.processor = processor
        self.image_token_id = processor.tokenizer.additional_special_tokens_ids[
            processor.tokenizer.additional_special_tokens.index("<image>")
        ]

    def __call__(self, examples):
        texts = []
        images = []
        for example in examples:
            image = example["image"]
            # print(example["query"])
            question = example["query"]
            answer = example["answers"]
            messages = [
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": "OCR the text in the image."},
                        {"type": "image"},
                        {"type": "text", "text": question}
                    ]
                },
                {
                    "role": "assistant",
                    "content": [
                        {"type": "text", "text": answer}
                    ]
                }
            ]
            text = processor.apply_chat_template(messages, add_generation_prompt=False)
            texts.append(text.strip())
            images.append([image])

        batch = processor(text=texts, images=images, return_tensors="pt", padding=True)

        labels = batch["input_ids"].clone()
        # labels[labels == processor.tokenizer.pad_token_id] = self.image_token_id
        batch["labels"] = labels

        return batch
        
# Define train and test size.
TRAIN_SAMPLES = 1000
TEST_SAMPLES = 200
TEST_SIZE = 0.166 #
samp_list = [1, 15000, 30000, 45000, 60000, 70000]

# Define the directory containing the images.
df_path = "/mnt/data1/Datasets/AlphaPen/" + "training_data.csv"
df = pd.read_csv(df_path)
df.dropna(inplace=True)
df["id"] = range(df.shape[0])
df["query"] = "What is shown in this image?"
train_df, test_df = train_test_split(df, test_size=0.02, random_state=0)

root_dir = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/final_cropped_rotated_"
image_paths_train = [root_dir + img for img in train_df.filename]
image_paths_test = [root_dir + img for img in test_df.filename]

# New batch
df_path_2 = "/mnt/data1/Datasets/AlphaPen/" + "training_b2.csv"
df_2 = pd.read_csv(df_path_2)
df_2.dropna(inplace=True)
df_2["id"] = range(df_2.shape[0])
df_2["query"] = "What is shown in this image?"
train_df_b2, test_df_b2 = train_test_split(df_2, test_size=0.01, random_state=0)

root_dir_2 = "/mnt/data1/Datasets/OCR/Alphapen/DataBatch2/clean_data/cropped_data/cropped_"
image_paths_2_train = [root_dir_2 + img for img in train_df_b2.filename]
image_paths_2_test = [root_dir_2 + img for img in test_df_b2.filename]


ids_test = range(test_df.shape[0] + test_df_b2.shape[0])
queries_test = test_df['query'].tolist() + test_df_b2['query'].tolist()
answers_test = test_df['text'].tolist() + test_df_b2['text'].tolist()

# Create the dataset dictionary.


eval_dataset_dict = {
    'id': ids_test,
    'image': image_paths_test + image_paths_2_test,
    'query': queries_test,
    'answers': answers_test
}

# Create the dataset.

eval_dataset = Dataset.from_dict(eval_dataset_dict)

# Cast the 'image' column to Image type.

eval_dataset = eval_dataset.cast_column("image", Image())

# Split the dataset into train and test.
# split_dataset = dataset.train_test_split(test_size=TEST_SIZE, shuffle=False)

# train_dataset = split_dataset["train"]
# eval_dataset  = split_dataset["test"]
print(len(eval_dataset))
# Push the dataset on Hugging Face Hub.
# split_dataset.push_to_hub("NSTiwari/DocumentIDEFICS_QA")


# Define model ID
# model_id = "microsoft/Phi-3-vision-128k-instruct"
model_id =  "HuggingFaceM4/idefics2-8b"

DEVICE = "cuda:0"
USE_LORA = False
USE_QLORA = True

processor = AutoProcessor.from_pretrained(
    model_id,
    do_image_splitting=False
)

# print(processor.tokenizer.additional_special_tokens.index("<image>"))
if USE_QLORA or USE_LORA:
    lora_config = LoraConfig(
        r=64,
        lora_alpha=16,
        lora_dropout=0.1,
    #     target_modules= [
    #     "q_proj",
    #     "k_proj",
    #     "v_proj",
    #     "o_proj",
    #     "gate_proj",
    #     "up_proj",
    #     # "down_proj",
    # ], 
        target_modules = '.*(text_model|modality_projection|perceiver_resampler).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$',
        use_dora=False if USE_QLORA else True,
        init_lora_weights="gaussian"
    )
    if USE_QLORA:
        bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16
        )
    model = AutoModelForVision2Seq.from_pretrained(
        model_id,
        torch_dtype=torch.float16,
        quantization_config=bnb_config if USE_QLORA else None,
        trust_remote_code=True
    )
    model.config.decoder_start_token_id = processor.tokenizer.cls_token_id
    model.config.pad_token_id = processor.tokenizer.pad_token_id
    model.config.max_length= 128
    model.add_adapter(lora_config)
    model.enable_adapters()
else:
    model = AutoModelForVision2Seq.from_pretrained(
        model_id,
        torch_dtype=torch.float16,
        _attn_implementation="flash_attention_2", # Need GPUs like A100 or H100.
        trust_remote_code=True
    ).to(DEVICE)





data_collator = MyDataCollator(processor)


for samp in samp_list:
    os.environ["WANDB_PROJECT"]="Alphapen"
    # Create a list of other columns such as id, query, and answer.
    ids_train = range(train_df.shape[0] + train_df_b2.shape[0])
    queries_train = train_df['query'].tolist() + train_df_b2['query'].tolist()
    answers_train = train_df['text'].tolist() + train_df_b2['text'].tolist()

    train_dataset_dict = {
    'id': ids_train,
    'image': image_paths_train + image_paths_2_train,
    'query': queries_train,
    'answers': answers_train
    }

    train_dataset = Dataset.from_dict(train_dataset_dict)
    train_dataset = train_dataset.cast_column("image", Image())

    training_args = Seq2SeqTrainingArguments(
        predict_with_generate=True,
        output_dir = "idefics2",
        learning_rate = 2e-4,
        fp16 = True,
        per_device_train_batch_size = 8,
        per_device_eval_batch_size = 8,
        gradient_accumulation_steps = 2,
        dataloader_pin_memory = False,
        save_total_limit = 3,
        eval_strategy ="steps",
        save_strategy = "steps",
        eval_steps = 500,
        save_steps = 1000,
        max_steps = 5000,
        logging_steps = 10,
        remove_unused_columns = False,
        push_to_hub=True,
        label_names = ["labels"],
        load_best_model_at_end = False,
        report_to = "wandb",
        optim = "paged_adamw_8bit",
        # run_name=f"idefics2-vision-LoRA-{datetime.now().strftime('%Y-%m-%d-%H-%M-%s')}",
        run_name="idefics2-vision-LoRA-" + str(samp),
        hub_model_id="hadrakey/alphapen_idefics2_" + str(samp),
    )

    def compute_metrics(pred):
        # accuracy_metric = evaluate.load("precision")
        cer_metric = evaluate.load("cer")

        labels_ids = pred.label_ids
        pred_ids = pred.predictions
        # print(pred_ids)
        # print(labels_ids)
        # max_length = max(pred_ids.shape[1], labels_ids.shape[1])
        # generated_texts = processor.batch_decode(generated_ids[:, inputs["input_ids"].size(1):], skip_special_tokens=True)
        pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
        pred_str = [word.lower() for word in pred_str]
        # print(pred_str)
        # pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
        labels_ids[labels_ids == -100] = processor.tokenizer.pad_token_id
        label_str = processor.batch_decode(labels_ids, skip_special_tokens=True)
        label_str = [word.lower() for word in label_str]
        # print(label_str)
        cer = cer_metric.compute(predictions=pred_str, references=label_str)
        # accuracy = accuracy_metric.compute(predictions=pred_ids.tolist(), references=labels_ids.tolist())

        return {"cer": cer}


    trainer = Seq2SeqTrainer(
        model = model,
        args = training_args,
        data_collator = data_collator,
        train_dataset = train_dataset,
        eval_dataset = eval_dataset,
        compute_metrics=compute_metrics,
    )

    trainer.train()