File size: 8,830 Bytes
e06b649 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
from datasets import Dataset, DatasetDict, Image
import pandas as pd
import os
import torch
from peft import LoraConfig
from transformers import AutoProcessor, BitsAndBytesConfig
from transformers import AutoModelForCausalLM, AutoModelForVision2Seq
from datetime import datetime
import evaluate
from transformers import TrainingArguments, Trainer, Seq2SeqTrainer, Seq2SeqTrainingArguments
from sklearn.model_selection import train_test_split
import random
class MyDataCollator:
def __init__(self, processor):
self.processor = processor
self.image_token_id = processor.tokenizer.additional_special_tokens_ids[
processor.tokenizer.additional_special_tokens.index("<image>")
]
def __call__(self, examples):
texts = []
images = []
for example in examples:
image = example["image"]
# print(example["query"])
question = example["query"]
answer = example["answers"]
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "OCR the text in the image."},
{"type": "image"},
{"type": "text", "text": question}
]
},
{
"role": "assistant",
"content": [
{"type": "text", "text": answer}
]
}
]
text = processor.apply_chat_template(messages, add_generation_prompt=False)
texts.append(text.strip())
images.append([image])
batch = processor(text=texts, images=images, return_tensors="pt", padding=True)
labels = batch["input_ids"].clone()
# labels[labels == processor.tokenizer.pad_token_id] = self.image_token_id
batch["labels"] = labels
return batch
# Define train and test size.
TRAIN_SAMPLES = 1000
TEST_SAMPLES = 200
TEST_SIZE = 0.166 #
samp_list = [1, 15000, 30000, 45000, 60000, 70000]
# Define the directory containing the images.
df_path = "/mnt/data1/Datasets/AlphaPen/" + "training_data.csv"
df = pd.read_csv(df_path)
df.dropna(inplace=True)
df["id"] = range(df.shape[0])
df["query"] = "What is shown in this image?"
train_df, test_df = train_test_split(df, test_size=0.02, random_state=0)
root_dir = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/final_cropped_rotated_"
image_paths_train = [root_dir + img for img in train_df.filename]
image_paths_test = [root_dir + img for img in test_df.filename]
# New batch
df_path_2 = "/mnt/data1/Datasets/AlphaPen/" + "training_b2.csv"
df_2 = pd.read_csv(df_path_2)
df_2.dropna(inplace=True)
df_2["id"] = range(df_2.shape[0])
df_2["query"] = "What is shown in this image?"
train_df_b2, test_df_b2 = train_test_split(df_2, test_size=0.01, random_state=0)
root_dir_2 = "/mnt/data1/Datasets/OCR/Alphapen/DataBatch2/clean_data/cropped_data/cropped_"
image_paths_2_train = [root_dir_2 + img for img in train_df_b2.filename]
image_paths_2_test = [root_dir_2 + img for img in test_df_b2.filename]
ids_test = range(test_df.shape[0] + test_df_b2.shape[0])
queries_test = test_df['query'].tolist() + test_df_b2['query'].tolist()
answers_test = test_df['text'].tolist() + test_df_b2['text'].tolist()
# Create the dataset dictionary.
eval_dataset_dict = {
'id': ids_test,
'image': image_paths_test + image_paths_2_test,
'query': queries_test,
'answers': answers_test
}
# Create the dataset.
eval_dataset = Dataset.from_dict(eval_dataset_dict)
# Cast the 'image' column to Image type.
eval_dataset = eval_dataset.cast_column("image", Image())
# Split the dataset into train and test.
# split_dataset = dataset.train_test_split(test_size=TEST_SIZE, shuffle=False)
# train_dataset = split_dataset["train"]
# eval_dataset = split_dataset["test"]
print(len(eval_dataset))
# Push the dataset on Hugging Face Hub.
# split_dataset.push_to_hub("NSTiwari/DocumentIDEFICS_QA")
# Define model ID
# model_id = "microsoft/Phi-3-vision-128k-instruct"
model_id = "HuggingFaceM4/idefics2-8b"
DEVICE = "cuda:0"
USE_LORA = False
USE_QLORA = True
processor = AutoProcessor.from_pretrained(
model_id,
do_image_splitting=False
)
# print(processor.tokenizer.additional_special_tokens.index("<image>"))
if USE_QLORA or USE_LORA:
lora_config = LoraConfig(
r=64,
lora_alpha=16,
lora_dropout=0.1,
# target_modules= [
# "q_proj",
# "k_proj",
# "v_proj",
# "o_proj",
# "gate_proj",
# "up_proj",
# # "down_proj",
# ],
target_modules = '.*(text_model|modality_projection|perceiver_resampler).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$',
use_dora=False if USE_QLORA else True,
init_lora_weights="gaussian"
)
if USE_QLORA:
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16
)
model = AutoModelForVision2Seq.from_pretrained(
model_id,
torch_dtype=torch.float16,
quantization_config=bnb_config if USE_QLORA else None,
trust_remote_code=True
)
model.config.decoder_start_token_id = processor.tokenizer.cls_token_id
model.config.pad_token_id = processor.tokenizer.pad_token_id
model.config.max_length= 128
model.add_adapter(lora_config)
model.enable_adapters()
else:
model = AutoModelForVision2Seq.from_pretrained(
model_id,
torch_dtype=torch.float16,
_attn_implementation="flash_attention_2", # Need GPUs like A100 or H100.
trust_remote_code=True
).to(DEVICE)
data_collator = MyDataCollator(processor)
for samp in samp_list:
os.environ["WANDB_PROJECT"]="Alphapen"
# Create a list of other columns such as id, query, and answer.
ids_train = range(train_df.shape[0] + train_df_b2.shape[0])
queries_train = train_df['query'].tolist() + train_df_b2['query'].tolist()
answers_train = train_df['text'].tolist() + train_df_b2['text'].tolist()
train_dataset_dict = {
'id': ids_train,
'image': image_paths_train + image_paths_2_train,
'query': queries_train,
'answers': answers_train
}
train_dataset = Dataset.from_dict(train_dataset_dict)
train_dataset = train_dataset.cast_column("image", Image())
training_args = Seq2SeqTrainingArguments(
predict_with_generate=True,
output_dir = "idefics2",
learning_rate = 2e-4,
fp16 = True,
per_device_train_batch_size = 8,
per_device_eval_batch_size = 8,
gradient_accumulation_steps = 2,
dataloader_pin_memory = False,
save_total_limit = 3,
eval_strategy ="steps",
save_strategy = "steps",
eval_steps = 500,
save_steps = 1000,
max_steps = 5000,
logging_steps = 10,
remove_unused_columns = False,
push_to_hub=True,
label_names = ["labels"],
load_best_model_at_end = False,
report_to = "wandb",
optim = "paged_adamw_8bit",
# run_name=f"idefics2-vision-LoRA-{datetime.now().strftime('%Y-%m-%d-%H-%M-%s')}",
run_name="idefics2-vision-LoRA-" + str(samp),
hub_model_id="hadrakey/alphapen_idefics2_" + str(samp),
)
def compute_metrics(pred):
# accuracy_metric = evaluate.load("precision")
cer_metric = evaluate.load("cer")
labels_ids = pred.label_ids
pred_ids = pred.predictions
# print(pred_ids)
# print(labels_ids)
# max_length = max(pred_ids.shape[1], labels_ids.shape[1])
# generated_texts = processor.batch_decode(generated_ids[:, inputs["input_ids"].size(1):], skip_special_tokens=True)
pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
pred_str = [word.lower() for word in pred_str]
# print(pred_str)
# pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
labels_ids[labels_ids == -100] = processor.tokenizer.pad_token_id
label_str = processor.batch_decode(labels_ids, skip_special_tokens=True)
label_str = [word.lower() for word in label_str]
# print(label_str)
cer = cer_metric.compute(predictions=pred_str, references=label_str)
# accuracy = accuracy_metric.compute(predictions=pred_ids.tolist(), references=labels_ids.tolist())
return {"cer": cer}
trainer = Seq2SeqTrainer(
model = model,
args = training_args,
data_collator = data_collator,
train_dataset = train_dataset,
eval_dataset = eval_dataset,
compute_metrics=compute_metrics,
)
trainer.train() |