|
from typing import Dict |
|
from PIL import Image |
|
import numpy as np |
|
import os |
|
import json |
|
import tensorflow as tf |
|
from tensorflow import keras |
|
|
|
class PreTrainedPipeline(): |
|
def __init__(self, path=""): |
|
self.model = keras.saving.load_model("./") |
|
with open(os.path.join(path, "config.json")) as config: |
|
config = json.load(config) |
|
self.id2label = config["id2label"] |
|
|
|
def __call__(self, inputs: "Image.Image")-> Dict[str, str]: |
|
""" |
|
Args: |
|
inputs (:obj:`PIL.Image`): |
|
The raw image representation as PIL. |
|
No transformation made whatsoever from the input. Make all necessary transformations here. |
|
Return: |
|
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82} |
|
It is preferred if the returned list is in decreasing `score` order |
|
""" |
|
img = keras.preprocessing.image.load_img(input, target_size=(224, 224)) |
|
x = keras.preprocessing.image.img_to_array(img) |
|
x = np.expand_dims(x, axis=0) |
|
x = keras.applications.vgg16.preprocess_input(x) |
|
prediction = self.model.predict(x) |
|
return { 'label': "detected", 'score': "dragon" if prediction[0][0] >= 0.99 else "not-dragon" } |
|
|