File size: 5,091 Bytes
3e6d928
 
 
 
 
 
 
 
 
 
 
 
 
cac4b9a
 
 
 
 
 
 
 
3e6d928
 
 
08042ae
cac4b9a
 
 
5421281
 
 
 
 
 
 
 
 
 
d8f6d6f
 
5421281
 
d8f6d6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5421281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cac4b9a
08042ae
 
d8f6d6f
3e6d928
 
08042ae
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
---
tags:
- text-to-image
- stable-diffusion

language:
- en
library_name: diffusers
---

# IP-Adapter-FaceID Model Card


<div align="center">

[**Project Page**](https://ip-adapter.github.io) **|** [**Paper (ArXiv)**](https://arxiv.org/abs/2308.06721) **|** [**Code**](https://github.com/tencent-ailab/IP-Adapter)
</div>

---



## Introduction

An experimental version of IP-Adapter-FaceID: we use face ID embedding from a face recognition model instead of CLIP image embedding, additionally, we use LoRA to improve ID consistency. IP-Adapter-FaceID can generate various style images conditioned on a face with only text prompts. 

![results](./ip-adapter-faceid.jpg)


**Update 2023/12/27**: 

IP-Adapter-FaceID-Plus: face ID embedding (for face ID) + CLIP image embedding (for face structure)

<div  align="center">    

![results](./faceid-plus.jpg)
</div>

## Usage

### IP-Adapter-FaceID

Firstly, you should use [insightface](https://github.com/deepinsight/insightface) to extract face ID embedding:

```python

import cv2
from insightface.app import FaceAnalysis


app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))

image = cv2.imread("person.jpg")
faces = app.get(image)

faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
```

Then, you can generate images conditioned on the face embeddings:

```python

import torch
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
from PIL import Image

from ip_adapter.ip_adapter_faceid import IPAdapterFaceID

base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
vae_model_path = "stabilityai/sd-vae-ft-mse"
ip_ckpt = "ip-adapter-faceid_sd15.bin"
device = "cuda"

noise_scheduler = DDIMScheduler(
    num_train_timesteps=1000,
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    clip_sample=False,
    set_alpha_to_one=False,
    steps_offset=1,
)
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
pipe = StableDiffusionPipeline.from_pretrained(
    base_model_path,
    torch_dtype=torch.float16,
    scheduler=noise_scheduler,
    vae=vae,
    feature_extractor=None,
    safety_checker=None
)

# load ip-adapter
ip_model = IPAdapterFaceID(pipe, ip_ckpt, device)

# generate image
prompt = "photo of a woman in red dress in a garden"
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality, blurry"

images = ip_model.generate(
    prompt=prompt, negative_prompt=negative_prompt, faceid_embeds=faceid_embeds, num_samples=4, width=512, height=768, num_inference_steps=30, seed=2023
)

```

### IP-Adapter-FaceID-Plus

Firstly, you should use [insightface](https://github.com/deepinsight/insightface) to extract face ID embedding and face image:

```python

import cv2
from insightface.app import FaceAnalysis
from insightface.utils import face_align


app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))

image = cv2.imread("person.jpg")
faces = app.get(image)

faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
face_image = face_align.norm_crop(image, landmark=faces[0].kps, image_size=224) # you can also segment the face
```

Then, you can generate images conditioned on the face embeddings:

```python

import torch
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
from PIL import Image

from ip_adapter.ip_adapter_faceid import IPAdapterFaceIDPlus

base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
vae_model_path = "stabilityai/sd-vae-ft-mse"
image_encoder_path = "h94/IP-Adapter/models/image_encoder"
ip_ckpt = "ip-adapter-faceid-plus_sd15.bin"
device = "cuda"

noise_scheduler = DDIMScheduler(
    num_train_timesteps=1000,
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    clip_sample=False,
    set_alpha_to_one=False,
    steps_offset=1,
)
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
pipe = StableDiffusionPipeline.from_pretrained(
    base_model_path,
    torch_dtype=torch.float16,
    scheduler=noise_scheduler,
    vae=vae,
    feature_extractor=None,
    safety_checker=None
)

# load ip-adapter
ip_model = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_ckpt, device)

# generate image
prompt = "photo of a woman in red dress in a garden"
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality, blurry"

images = ip_model.generate(
    prompt=prompt, negative_prompt=negative_prompt, face_image=face_image, faceid_embeds=faceid_embeds, num_samples=4, width=512, height=768, num_inference_steps=30, seed=2023
)

```


## Limitations and Bias
- The model does not achieve perfect photorealism and ID consistency.
- The generalization of the model is limited due to limitations of the training data, base model and face recognition model.



## Non-commercial use
**This model is released exclusively for research purposes and is not intended for commercial use.**