Upload tokenization_xgen.py
Browse files- tokenization_xgen.py +234 -0
tokenization_xgen.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, salesforce.com, inc.
|
2 |
+
# All rights reserved.
|
3 |
+
# SPDX-License-Identifier: Apache-2.0
|
4 |
+
# For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/Apache-2.0
|
5 |
+
"""Tokenization classes for xgen."""
|
6 |
+
|
7 |
+
from typing import List, Optional
|
8 |
+
|
9 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
10 |
+
from transformers.utils import logging
|
11 |
+
|
12 |
+
try:
|
13 |
+
import tiktoken
|
14 |
+
except ModuleNotFoundError as e:
|
15 |
+
raise ModuleNotFoundError("XGen requires the installation of tiktoken. Please install it via `pip install tiktoken`.") from e
|
16 |
+
|
17 |
+
|
18 |
+
logger = logging.get_logger(__name__)
|
19 |
+
|
20 |
+
MAX_MODEL_INPUT_SIZES = {
|
21 |
+
"Salesforce/xgen-7b-4k-base": 4096,
|
22 |
+
"Salesforce/xgen-7b-8k-base": 8192,
|
23 |
+
"Salesforce/xgen-7b-4k-inst": 4096,
|
24 |
+
"Salesforce/xgen-7b-8k-inst": 8192
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
def tiktoken_tokenizer(base="gpt2", pad_token=None, add_special=True):
|
29 |
+
if not add_special:
|
30 |
+
return tiktoken.get_encoding(base)
|
31 |
+
|
32 |
+
def include_whitespace(n_min=2, n_max=20):
|
33 |
+
whitespaces = [" " * n for n in reversed(range(n_min, n_max))]
|
34 |
+
return whitespaces
|
35 |
+
|
36 |
+
def include_tabs(n_min=2, n_max=20):
|
37 |
+
tabs = ["\t" * n for n in reversed(range(n_min, n_max))]
|
38 |
+
return tabs
|
39 |
+
|
40 |
+
def include_fim_tokens():
|
41 |
+
fim_tokens = [
|
42 |
+
"<fim_prefix>",
|
43 |
+
"<fim_middle>",
|
44 |
+
"<fim_suffix>",
|
45 |
+
"<fim_pad>",
|
46 |
+
"<filename>",
|
47 |
+
"<gh_stars>",
|
48 |
+
"<issue_start>",
|
49 |
+
"<issue_comment>",
|
50 |
+
"<issue_closed>",
|
51 |
+
"<jupyter_start>",
|
52 |
+
"<jupyter_text>",
|
53 |
+
"<jupyter_code>",
|
54 |
+
"<jupyter_output>",
|
55 |
+
"<empty_output>",
|
56 |
+
"<commit_before>",
|
57 |
+
"<commit_msg>",
|
58 |
+
"<commit_after>",
|
59 |
+
"<reponame>"
|
60 |
+
]
|
61 |
+
return fim_tokens
|
62 |
+
|
63 |
+
add_whitespaces = include_whitespace(n_min=2, n_max=32)
|
64 |
+
add_tabs = include_tabs(n_min=2, n_max=10)
|
65 |
+
fim_tokens = include_fim_tokens()
|
66 |
+
|
67 |
+
tokenizer = tiktoken.get_encoding(base)
|
68 |
+
|
69 |
+
idx = tokenizer.n_vocab
|
70 |
+
|
71 |
+
bpe_ranks = tokenizer._mergeable_ranks
|
72 |
+
|
73 |
+
for wsp in add_whitespaces:
|
74 |
+
bpe_ranks[bytes(wsp, 'ascii')] = idx
|
75 |
+
idx += 1
|
76 |
+
for t in add_tabs:
|
77 |
+
bpe_ranks[bytes(t, 'ascii')] = idx
|
78 |
+
idx += 1
|
79 |
+
|
80 |
+
special_tokens = dict()
|
81 |
+
|
82 |
+
for sp in fim_tokens:
|
83 |
+
special_tokens[sp] = idx
|
84 |
+
idx += 1
|
85 |
+
|
86 |
+
if pad_token and pad_token not in tokenizer._special_tokens and pad_token not in special_tokens:
|
87 |
+
special_tokens[pad_token] = idx
|
88 |
+
idx += 1
|
89 |
+
# In production, load the arguments directly instead of accessing private attributes
|
90 |
+
# See openai_public.py for examples of arguments for specific encodings
|
91 |
+
enc = tiktoken.Encoding(
|
92 |
+
# If you're changing the set of special tokens, make sure to use a different name
|
93 |
+
# It should be clear from the name what behaviour to expect.
|
94 |
+
name=base.replace("base", "im"),
|
95 |
+
pat_str=tokenizer._pat_str,
|
96 |
+
mergeable_ranks=bpe_ranks,
|
97 |
+
special_tokens={
|
98 |
+
**tokenizer._special_tokens,
|
99 |
+
**special_tokens
|
100 |
+
}
|
101 |
+
)
|
102 |
+
return enc
|
103 |
+
|
104 |
+
|
105 |
+
class XgenTokenizer(PreTrainedTokenizer):
|
106 |
+
"""
|
107 |
+
Construct a Xgen tokenizer. Based on byte-level Byte-Pair-Encoding.
|
108 |
+
Args:
|
109 |
+
vocab_file (`str`):
|
110 |
+
Path to the vocabulary file.
|
111 |
+
"""
|
112 |
+
max_model_input_sizes = MAX_MODEL_INPUT_SIZES
|
113 |
+
model_input_names = ["input_ids", "attention_mask"]
|
114 |
+
|
115 |
+
def __init__(
|
116 |
+
self,
|
117 |
+
pad_token=None,
|
118 |
+
eos_token="<|endoftext|>",
|
119 |
+
add_eos_token=False,
|
120 |
+
add_special_tokens=True,
|
121 |
+
**kwargs,
|
122 |
+
):
|
123 |
+
pad_token_added = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
124 |
+
eos_token_added = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
125 |
+
super().__init__(
|
126 |
+
pad_token=pad_token_added,
|
127 |
+
eos_token=eos_token_added,
|
128 |
+
add_eos_token=add_eos_token,
|
129 |
+
add_special_tokens=add_special_tokens,
|
130 |
+
**kwargs,
|
131 |
+
)
|
132 |
+
self.add_eos_token = add_eos_token
|
133 |
+
self.encoder = tiktoken_tokenizer(base="gpt2", pad_token=pad_token, add_special=add_special_tokens)
|
134 |
+
|
135 |
+
@property
|
136 |
+
def vocab_size(self):
|
137 |
+
"""Returns vocab size"""
|
138 |
+
return self.encoder.n_vocab
|
139 |
+
|
140 |
+
def get_vocab(self):
|
141 |
+
"""Returns vocab as a dict"""
|
142 |
+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
143 |
+
return vocab
|
144 |
+
|
145 |
+
def _tokenize(self, text, **kwargs):
|
146 |
+
"""Returns a tokenized string."""
|
147 |
+
return self.encoder.encode(text, allowed_special="all")
|
148 |
+
|
149 |
+
def _convert_token_to_id(self, token):
|
150 |
+
"""Converts a token (str) in an id using the vocab."""
|
151 |
+
if isinstance(token, str):
|
152 |
+
return self.encoder.encode_single_token(token)
|
153 |
+
else:
|
154 |
+
return token
|
155 |
+
|
156 |
+
def _convert_id_to_token(self, index):
|
157 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
158 |
+
return self.encoder.decode_single_token_bytes(index)
|
159 |
+
|
160 |
+
def _decode(self, token_ids: List[int], skip_special_tokens: bool = False, **kwargs):
|
161 |
+
if skip_special_tokens:
|
162 |
+
token_ids = [t for t in token_ids if t not in self.all_special_ids]
|
163 |
+
return self.encoder.decode(token_ids)
|
164 |
+
|
165 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]:
|
166 |
+
"""Build model inputs from a sequence by appending eos_token_id."""
|
167 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
168 |
+
|
169 |
+
output = token_ids_0 + eos_token_id
|
170 |
+
|
171 |
+
if token_ids_1 is not None:
|
172 |
+
output = output + token_ids_1 + eos_token_id
|
173 |
+
|
174 |
+
return output
|
175 |
+
|
176 |
+
def get_special_tokens_mask(
|
177 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None,
|
178 |
+
already_has_special_tokens: bool = False
|
179 |
+
) -> List[int]:
|
180 |
+
"""
|
181 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
182 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
183 |
+
Args:
|
184 |
+
token_ids_0 (`List[int]`):
|
185 |
+
List of IDs.
|
186 |
+
token_ids_1 (`List[int]`, *optional*):
|
187 |
+
Optional second list of IDs for sequence pairs.
|
188 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
189 |
+
Whether the token list is already formatted with special tokens for the model.
|
190 |
+
Returns:
|
191 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
192 |
+
"""
|
193 |
+
if already_has_special_tokens:
|
194 |
+
return super().get_special_tokens_mask(
|
195 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
196 |
+
)
|
197 |
+
|
198 |
+
eos_token_id = [1] if self.add_eos_token else []
|
199 |
+
|
200 |
+
if token_ids_1 is None:
|
201 |
+
return ([0] * len(token_ids_0)) + eos_token_id
|
202 |
+
return ([0] * len(token_ids_0)) + eos_token_id + ([0] * len(token_ids_1)) + eos_token_id
|
203 |
+
|
204 |
+
def create_token_type_ids_from_sequences(
|
205 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
206 |
+
) -> List[int]:
|
207 |
+
"""
|
208 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
209 |
+
sequence pair mask has the following format:
|
210 |
+
```
|
211 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
212 |
+
| first sequence | second sequence |
|
213 |
+
```
|
214 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
215 |
+
Args:
|
216 |
+
token_ids_0 (`List[int]`):
|
217 |
+
List of ids.
|
218 |
+
token_ids_1 (`List[int]`, *optional*):
|
219 |
+
Optional second list of IDs for sequence pairs.
|
220 |
+
Returns:
|
221 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
222 |
+
"""
|
223 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
224 |
+
|
225 |
+
output = [0] * len(token_ids_0 + eos_token_id)
|
226 |
+
|
227 |
+
if token_ids_1 is not None:
|
228 |
+
output += [1] * len(token_ids_1 + eos_token_id)
|
229 |
+
|
230 |
+
return output
|
231 |
+
|
232 |
+
# has no vocab file
|
233 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None):
|
234 |
+
return ()
|