File size: 9,564 Bytes
c1a7f73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import pickle
import torch
import matplotlib.pyplot as plt
import numpy as np
from tqdm import tqdm
from argparse import ArgumentParser
from dev.datasets.preprocess import TokenProcessor
from dev.transforms.target_builder import WaymoTargetBuilder


colors = [
    ('#1f77b4', '#1a5a8a'),  # blue
    ('#2ca02c', '#217721'),  # green
    ('#ff7f0e', '#cc660b'),  # orange
    ('#9467bd', '#6f4a91'),  # purple
    ('#d62728', '#a31d1d'),  # red
    ('#000000', '#000000'),  # black
]


def draw_map(tokenize_data, token_processor: TokenProcessor, index, posfix):
    print("Drawing raw data ...")
    shift = 5
    token_size = 2048

    traj_token = token_processor.trajectory_token["veh"]
    traj_token_all = token_processor.trajectory_token_all["veh"]

    plt.subplots_adjust(left=0.3, right=0.7, top=0.7, bottom=0.3)
    fig, ax = plt.subplots()
    ax.set_axis_off()

    scenario_id = data['scenario_id']
    ax.scatter(tokenize_data["map_point"]["position"][:, 0],
               tokenize_data["map_point"]["position"][:, 1], s=0.2, c='black', edgecolors='none')

    index = np.array(index).astype(np.int32)
    agent_data = tokenize_data["agent"]
    token_index = agent_data["token_idx"][index]
    token_valid_mask = agent_data["agent_valid_mask"][index]

    num_agent, num_token = token_index.shape
    tokens = traj_token[token_index.view(-1)].reshape(num_agent, num_token, 4, 2)
    tokens_all = traj_token_all[token_index.view(-1)].reshape(num_agent, num_token, 6, 4, 2)

    position = agent_data['position'][index, :, :2] # (num_agent, 91, 2)
    heading = agent_data['heading'][index] # (num_agent, 91)
    valid_mask = (position[..., 0] != 0) & (position[..., 1] != 0) # (num_agent, 91)
    # TODO: fix this
    if args.smart:
        for shifted_tid in range(token_valid_mask.shape[1]):
            valid_mask[:, shifted_tid * shift : (shifted_tid + 1) * shift] = token_valid_mask[:, shifted_tid : shifted_tid + 1].repeat(1, shift)
    else:
        for shifted_tid in range(token_index.shape[1]):
            valid_mask[:, shifted_tid * shift : (shifted_tid + 1) * shift] = token_index[:, shifted_tid : shifted_tid + 1] != token_size + 2
    last_valid_step = valid_mask.shape[1] - 1 - torch.argmax(valid_mask.flip(dims=[1]).long(), dim=1)
    last_valid_step = {int(index[i]): int(last_valid_step[i]) for i in range(len(index))}

    _, token_num, token_contour_dim, feat_dim = tokens.shape
    tokens_src = tokens.reshape(num_agent, token_num * token_contour_dim, feat_dim)
    tokens_all_src = tokens_all.reshape(num_agent, token_num * 6 * token_contour_dim, feat_dim)
    prev_heading = heading[:, 0]
    prev_pos = position[:, 0]

    fig_paths = []
    agent_colors = np.zeros((num_agent, position.shape[1]))
    shape = np.zeros((num_agent, position.shape[1], 2)) + 3.
    for tid in tqdm(range(shift, position.shape[1], shift), leave=False, desc="Token ..."):
        cos, sin = prev_heading.cos(), prev_heading.sin()
        rot_mat = prev_heading.new_zeros(num_agent, 2, 2)
        rot_mat[:, 0, 0] = cos
        rot_mat[:, 0, 1] = sin
        rot_mat[:, 1, 0] = -sin
        rot_mat[:, 1, 1] = cos
        tokens_world = torch.bmm(torch.from_numpy(tokens_src).float(), rot_mat).reshape(num_agent,
                                                                                        token_num,
                                                                                        token_contour_dim,
                                                                                        feat_dim)
        tokens_all_world = torch.bmm(torch.from_numpy(tokens_all_src).float(), rot_mat).reshape(num_agent,
                                                                                                token_num,
                                                                                                6,
                                                                                                token_contour_dim,
                                                                                                feat_dim)
        tokens_world += prev_pos[:, None, None, :2]
        tokens_all_world += prev_pos[:, None, None, None, :2]
        tokens_select = tokens_world[:, tid // shift - 1] # (num_agent, token_contour_dim, feat_dim)
        tokens_all_select = tokens_all_world[:, tid // shift - 1] # (num_agent, 6, token_contour_dim, feat_dim)

        diff_xy = tokens_select[:, 0, :] - tokens_select[:, 3, :]
        prev_heading = heading[:, tid].clone()
        # prev_heading[valid_mask[:, tid - shift]] = torch.arctan2(diff_xy[:, 1], diff_xy[:, 0])[
        #     valid_mask[:, tid - shift]]
        prev_pos = position[:, tid].clone()
        # prev_pos[valid_mask[:, tid - shift]] = tokens_select.mean(dim=1)[valid_mask[:, tid - shift]]

        # NOTE tokens_pos equals to tokens_all_pos[:, -1]
        tokens_pos = tokens_select.mean(dim=1) # (num_agent, 2)
        tokens_all_pos = tokens_all_select.mean(dim=2) # (num_agent, 6, 2)

        # colors
        cur_token_index = token_index[:, tid // shift - 1]
        is_bos = cur_token_index == token_size
        is_eos = cur_token_index == token_size + 1
        is_invalid = cur_token_index == token_size + 2
        is_valid = ~is_bos & ~is_eos & ~is_invalid
        agent_colors[is_valid, tid - shift : tid] = 1
        agent_colors[is_bos, tid - shift : tid] = 2
        agent_colors[is_eos, tid - shift : tid] = 3
        agent_colors[is_invalid, tid - shift : tid] = 4

        for i in tqdm(range(shift), leave=False, desc="Timestep ..."):
            global_tid = tid - shift + i
            cur_valid_mask = valid_mask[:, tid - shift] # only when the last tokenized timestep is valid the current shifts trajectory is valid
            xs = tokens_all_pos[cur_valid_mask, i, 0]
            ys = tokens_all_pos[cur_valid_mask, i, 1]
            widths = shape[cur_valid_mask, global_tid, 1]
            lengths = shape[cur_valid_mask, global_tid, 0]
            angles = heading[cur_valid_mask, global_tid]
            cur_agent_colors = agent_colors[cur_valid_mask, global_tid]
            current_index = index[cur_valid_mask]

            drawn_agents = []
            drawn_texts = []
            for x, y, width, length, angle, color_type, id in zip(
                xs, ys, widths, lengths, angles, cur_agent_colors, current_index):
                if x < 3000: continue
                agent = plt.Rectangle((x, y), width, length, # angle=((angle + np.pi / 2) / np.pi * 360) % 360,
                                        linewidth=0.2,
                                        facecolor=colors[int(color_type) - 1][0],
                                        edgecolor=colors[int(color_type) - 1][1])
                ax.add_patch(agent)
                text = plt.text(x-4, y-4, f"{str(id)}:{str(global_tid)}", fontdict={'family': 'serif', 'size': 3, 'color': 'red'})

                if global_tid != last_valid_step[id]:
                    drawn_agents.append(agent)
                    drawn_texts.append(text)

                # draw timestep to be tokenized
                if global_tid % shift == 0:
                    tokenize_agent = plt.Rectangle((x, y), width, length, # angle=((angle + np.pi / 2) / np.pi * 360) % 360,
                                                    linewidth=0.2, fill=False,
                                                    edgecolor=colors[int(color_type) - 1][1])
                    ax.add_patch(tokenize_agent)

            plt.gca().set_aspect('equal', adjustable='box')

            fig_path = f"debug/tokenize/steps/{scenario_id}_{global_tid}.png"
            plt.savefig(fig_path, dpi=600, bbox_inches="tight")
            fig_paths.append(fig_path)

            for drawn_agent, drawn_text in zip(drawn_agents, drawn_texts):
                drawn_agent.remove()
                drawn_text.remove()

    plt.close()

    # generate gif
    import imageio.v2 as imageio
    images = []
    for fig_path in tqdm(fig_paths, leave=False, desc="Generate gif ..."):
        images.append(imageio.imread(fig_path))
    imageio.mimsave(f"debug/tokenize/{scenario_id}_tokenize_{posfix}.gif", images, duration=0.1)


def main(data):

    token_size = 2048

    os.makedirs("debug/tokenize/steps/", exist_ok=True)
    scenario_id = data["scenario_id"]

    selected_agents_index = [1, 21, 35, 36, 46]

    # raw data
    if not os.path.exists(f"debug/tokenize/{scenario_id}_raw.gif"):
        draw_raw(data, selected_agents_index)

    # tokenization
    token_processor = TokenProcessor(token_size, disable_invalid=args.smart)
    print(f"Loaded token processor with token_size: {token_size}")
    data = token_processor.preprocess(data)

    # tokenzied data
    posfix = "smart" if args.smart else "ours"
    # if not os.path.exists(f"debug/tokenize/{scenario_id}_tokenize_{posfix}.gif"):
    draw_tokenize(data, token_processor, selected_agents_index, posfix)

    target_builder = WaymoTargetBuilder(num_historical_steps=11, num_future_steps=80)
    data = target_builder(data)


if __name__ == "__main__":
    parser = ArgumentParser(description="Testing script parameters")
    parser.add_argument("--smart", action="store_true")
    parser.add_argument("--data_path", type=str, default="/u/xiuyu/work/dev4/data/waymo_processed/training")
    args = parser.parse_args()

    scenario_id = "74ad7b76d5906d39"
    data_path = os.path.join(args.data_path, f"{scenario_id}.pkl")
    data = pickle.load(open(data_path, "rb"))
    print(f"Loaded scenario {scenario_id}")

    main(data)