File size: 44,412 Bytes
7718235 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 |
import gzip
import json
import os
import pickle
from abc import abstractmethod
from os.path import exists
from typing import List
import string
import random
import biotite.structure
import numpy as np
import pandas as pd
import socket
import torch
from Bio.PDB import PDBParser
from Bio.PDB.DSSP import DSSP
from biopandas.pdb import PandasPdb
from biotite.sequence import ProteinSequence
from biotite.structure import get_chains
from biotite.structure.io import pdbx, pdb
from biotite.structure.residues import get_residues
from torch_cluster import radius_graph, knn_graph
# Path to the AF2 data
AF2_DATA_PATH = './data.files/af2.files/'
# unused in this version
AF2_REP_DATA_PATH = "NA"
# Path to the AF2 data
ESM_MODEL_SIZE = '650M'
ESM_DATA_PATH = f'./data.files/esm.files/'
# Path to the ESM2 data
MSA_DATA_PATH_ARCHIVE = './data.files/gMVP.MSA/'
MSA_DATA_PATH = './data.files/MSA/'
# unused in this version
PAE_DATA_PATH = 'NA'
# Path to the ESM_MSA data
# TODO: update the path
MSA_ATTN_DATA_PATH = './data.files/esm.MSA/'
NUM_THREADS = 42
# prepare esm2 embeddings
with open(f'./utils/LANGUAGE_MODEL.{ESM_MODEL_SIZE}.pkl', 'rb') as f:
LANGUAGE_MODEL = pickle.load(f)
with open(f'./utils/ALPHABET_CONVERTER.{ESM_MODEL_SIZE}.pkl', 'rb') as f:
ALPHABET_CONVERTER = pickle.load(f)
with open(f'./utils/ESM_AA_EMBEDDING_DICT.{ESM_MODEL_SIZE}.pkl', 'rb') as f:
ESM_AA_EMBEDDING_DICT = pickle.load(f)
with open(f'./utils/ESM_AA_EMBEDDING_DICT.esm1b.pkl', 'rb') as f:
ESM1b_AA_EMBEDDING_DICT = pickle.load(f)
# prepare 5dim embeddings
with open(f'./utils/AA_5_DIM_EMBED.pkl', 'rb') as f:
AA_5DIM_EMBED = pickle.load(f)
# ESM tokens
ESM_TOKENS = ['<cls>', '<pad>', '<eos>', '<unk>',
'L', 'A', 'G', 'V', 'S', 'E', 'R', 'T', 'I', 'D',
'P', 'K', 'Q', 'N', 'F', 'Y', 'M', 'H', 'W', 'C',
'X', 'B', 'U', 'Z', 'O', '.', '-',
'<null_1>', '<mask>']
# amino acid dictionary, no padding token because it is not used (batch size is 1 as limited by GPU memory)
AA_DICT = ['L', 'A', 'G', 'V', 'S', 'E', 'R', 'T', 'I', 'D',
'P', 'K', 'Q', 'N', 'F', 'Y', 'M', 'H', 'W', 'C',
'X', 'B', 'U', 'Z', 'O', '<mask>']
AA_DICT_HUMAN = ['L', 'A', 'G', 'V', 'S', 'E', 'R', 'T', 'I', 'D',
'P', 'K', 'Q', 'N', 'F', 'Y', 'M', 'H', 'W', 'C']
DSSP_DICT = ['H', 'B', 'E', 'G', 'I', 'T', 'S', '-', 'P']
PTM_DICT = {'ac': 0, 'ga': 1, 'gl': 2, 'm1': 3, 'm2': 4, 'm3': 5, 'me': 6, 'p': 7, 'sm': 8, 'ub': 9}
class Mutation:
"""
A mutation object that stores the information of a mutation.
Can specify max_len of sequence to crop the sequence.
Can specify af2_file to ignore the input sequence and use the AF2 sequence instead.
"""
def __init__(self, uniprot_id, transcript_id, seq_orig, seq_orig_len, pos_orig, ref_aa, alt_aa, max_len=2251, af2_file=None):
# initialize attributes
self.seq = None
self.seq_start = None
self.seq_end = None
self.seq_start_orig = None
self.seq_end_orig = None
self.pos = None
self.uniprot_id = None
self.af2_file = None
self.af2_rep_file_prefix = None
self.af2_seq_index = None
self.msa_seq_index = None
self.esm_seq_index = None
self.af2_rep_index = None
self.ref_aa = None
self.alt_aa = None
self.ESM_prefix = None
self.crop = False
self.seq_len = None
self.seq_len_orig = None
self.max_len = max_len
self.half_max_len = max_len // 2
self.set_af2_fragment_idx(seq_orig, seq_orig_len, uniprot_id, pos_orig, af2_file)
self.transcript_id = transcript_id
self.set_ref_alt_aa(ref_aa, alt_aa)
self.init_af2_file_idx()
self.crop_fn()
def set_af2_fragment_idx(self, seq_orig, seq_orig_len, uniprot_id, pos_orig, af2_file):
self.seq_len_orig = seq_orig_len
if isinstance(pos_orig, str):
pos_orig = np.array([int(i) for i in pos_orig.split(';')])
else:
pos_orig = np.array([int(pos_orig)])
if af2_file is None or pd.isna(af2_file):
if uniprot_id.find('-F') != -1:
idx = int(uniprot_id.split('-F')[-1])
uniprot_id = uniprot_id.split('-F')[0]
seq_start = 1
seq_end = seq_orig_len
self.seq_start_orig = seq_start
self.seq_end_orig = seq_end
seq = seq_orig
pos = pos_orig
self.ESM_prefix = f'{uniprot_id}-F{idx}'
seq_len = 1400
self.af2_rep_file_prefix = f'{AF2_REP_DATA_PATH}/{uniprot_id}-F{idx}/{uniprot_id}-F{idx}'
else:
self.ESM_prefix = f'{uniprot_id}'
if seq_orig_len > 2700:
idx = min(max(1, pos_orig[0] // 200 - 2), seq_orig_len // 200 - 5)
seq_start = (idx - 1) * 200 + 1
seq_end = min((idx + 6) * 200, seq_orig_len)
self.seq_start_orig = seq_start
self.seq_end_orig = seq_end
seq = seq_orig[seq_start - 1:seq_end]
pos = pos_orig - seq_start + 1
seq_len = seq_end - seq_start + 1
seq_start = 1
seq_end = seq_len
else:
idx = 1
seq_start = 1
seq_end = seq_orig_len
self.seq_start_orig = seq_start
self.seq_end_orig = seq_end
seq_len = seq_orig_len
seq = seq_orig
pos = pos_orig
if uniprot_id == "Q8WZ42": # This protein is TTN, which is too long
self.ESM_prefix = f'{uniprot_id}-F{idx}'
if seq_orig_len >= 7000:
self.af2_rep_file_prefix = f'{AF2_REP_DATA_PATH}/{uniprot_id}-F{idx}/{uniprot_id}-F{idx}'
else:
self.af2_rep_file_prefix = f'{AF2_REP_DATA_PATH}/{uniprot_id}/{uniprot_id}'
self.seq = seq
self.seq_start = seq_start
self.seq_end = seq_end
self.seq_len = seq_len
self.pos = pos
self.uniprot_id = uniprot_id
self.af2_file = f'{AF2_DATA_PATH}/AF-{uniprot_id}-F{idx}-model_v4.pdb.gz'
else:
self.af2_file = af2_file
self.ESM_prefix = uniprot_id
self.seq = seq_orig
self.seq_start = 1
self.seq_end = seq_orig_len
self.seq_start_orig = self.seq_start
self.seq_end_orig = self.seq_end
self.seq_len = seq_orig_len
self.pos = pos_orig
self.uniprot_id = uniprot_id
def set_ref_alt_aa(self, ref_aa, alt_aa):
# ref aa and alt aa are strings
if ";" in ref_aa or ";" in alt_aa:
# multiple mutations
self.ref_aa = np.array(ref_aa.split(';'))
self.alt_aa = np.array(alt_aa.split(';'))
else:
# single mutation
self.ref_aa = np.array([ref_aa])
self.alt_aa = np.array([alt_aa])
def init_af2_file_idx(self):
if not exists(self.af2_file):
print(f'Warning: {self.uniprot_id} AF2 file not found: {self.af2_file}')
self.af2_file = None
# else:
# af2_seq = AF2_SEQ_DICT[self.af2_file]['seq']
# if af2_seq != self.seq and not self.crop:
# # if not match and not due to crop, then the seq is not in the AF2 file
# print(f'Warning: {self.uniprot_id} seq not match AF2 seq: {self.seq} vs {af2_seq}')
# self.af2_file = None
self.af2_seq_index = None # Use index to avoid loading the same seq multiple times
def crop_fn(self):
seq_len = self.seq_len
pos = self.pos
seq_start = self.seq_start
seq_end = self.seq_end
seq = self.seq
# remove sequence longer than max_len
if seq_len >= self.max_len:
if pos[0] <= self.half_max_len:
seq_start = 1
seq_end = self.max_len
seq = seq[:self.max_len]
pos = pos
seq_len = self.max_len
elif seq_len - pos[0] <= self.max_len - self.half_max_len:
seq_start = seq_len - self.max_len + 1
seq_end = seq_len
seq = seq[seq_start - 1:]
pos = pos - seq_start + 1
seq_len = self.max_len
else:
seq_start = pos[0] - self.half_max_len
seq_end = pos[0] + self.max_len - self.half_max_len - 1
seq = seq[seq_start - 1:seq_end]
pos = pos - seq_start + 1
seq_len = self.max_len
self.crop = True
self.seq = seq
self.seq_start = seq_start
self.seq_end = seq_end
self.seq_len = seq_len
self.pos = pos
def set_af2_seq_index(self, idx):
self.af2_seq_index = idx
def set_msa_seq_index(self, idx):
self.msa_seq_index = idx
def set_esm_seq_index(self, idx):
self.esm_seq_index = idx
def set_af2_rep_index(self, idx):
self.af2_rep_index = idx
class RandomPointMutation(Mutation):
def __init__(self, uniprot_id, transcript_id, seq_orig, seq_orig_len, max_len=2251):
pos_orig = np.random.randint(1, seq_orig_len + 1)
ref_aa = seq_orig[pos_orig - 1]
alt_aa = np.random.choice(list("ACDEFGHIKLMNPQRSTVWY"))
super().__init__(uniprot_id, transcript_id, seq_orig, seq_orig_len, pos_orig, ref_aa, alt_aa, max_len)
class MaskPredictPointMutation(Mutation):
# a class that support mask and predict as well as point mutation
def __init__(self, uniprot_id, transcript_id, seq_orig, seq_orig_len, pos_orig, ref_aa, alt_aa, max_len=2251, af2_file=None):
if pos_orig is None or pos_orig == 0:
pos_orig = np.random.randint(1, seq_orig_len + 1)
self.ESM_prefix = None
self.max_len = max_len
self.half_max_len = max_len // 2
super().__init__(uniprot_id, transcript_id, seq_orig, seq_orig_len, pos_orig, ref_aa, alt_aa, max_len=max_len, af2_file=af2_file)
# don't need ESM prefix
def init_af2_file_idx(self):
# don't check whether seq match AF2 seq
if not exists(self.af2_file):
print(f'Warning: {self.uniprot_id} AF2 file not found: {self.af2_file}')
self.af2_file = None
self.af2_seq_index = None # Use index to avoid loading the same seq multiple times
def convert_to_onesite(dataset: pd.DataFrame):
# first get unique uniprotID and pos.orig
if 'ref_aa' not in dataset.columns:
dataset['ref_aa'] = dataset['ref']
if 'alt_aa' not in dataset.columns:
dataset['alt_aa'] = dataset['alt']
dataset_onesite = dataset.copy(deep=True)
dataset_onesite = dataset_onesite.drop_duplicates(subset=['uniprotID', 'pos.orig'])
# then for each unique uniprotID and pos.orig, get all ref and alt aa, as well as their scores
# if exists the confidence of score, then use it, otherwise use 1
# get score and confidence.score columns
score_cols = [col for col in dataset.columns if col.startswith('score')]
confidence_cols = [col for col in dataset.columns if col.startswith('confidence.score')]
# if confidence_cols is empty, then use 1
if len(confidence_cols) == 0:
confidence_cols = [f'confidence.score.{i}' for i in range(len(score_cols))]
for col in confidence_cols:
dataset[col] = 1
dataset_onesite[col] = 1
for i in dataset_onesite.index:
subdataset = dataset[(dataset['uniprotID'] == dataset_onesite.loc[i, 'uniprotID']) & (dataset['pos.orig'] == dataset_onesite.loc[i, 'pos.orig'])]
dataset_onesite.loc[i, 'ref_aa'] = ';'.join(subdataset['ref_aa'].values)
dataset_onesite.loc[i, 'alt_aa'] = ';'.join(subdataset['alt_aa'].values)
# if score_cols and confidence_cols are not empty, then concatenate them
if len(score_cols) > 0:
for col in score_cols:
dataset_onesite.loc[i, col] = ';'.join(subdataset[col].values.astype('str'))
if len(confidence_cols) > 0:
for col in confidence_cols:
dataset_onesite.loc[i, col] = ';'.join(subdataset[col].values.astype('str'))
return dataset_onesite
def load_structure(fpath, chain=None):
"""
Args:
fpath: filepath to either pdb or cif file
chain: the chain id or list of chain ids to load
Returns:
biotite.structure.AtomArray
"""
if fpath.endswith('cif'):
with open(fpath) as fin:
pdbxf = pdbx.PDBxFile.read(fin)
structure = pdbx.get_structure(pdbxf, model=1)
elif fpath.endswith('cif.gz'):
with gzip.open(fpath, 'rt') as fin:
pdbxf = pdbx.PDBxFile.read(fin)
structure = pdbx.get_structure(pdbxf, model=1)
elif fpath.endswith('pdb'):
with open(fpath) as fin:
pdbf = pdb.PDBFile.read(fin)
structure = pdb.get_structure(pdbf, model=1)
elif fpath.endswith('pdb.gz'):
with gzip.open(fpath, 'rt') as fin:
pdbf = pdb.PDBFile.read(fin)
structure = pdb.get_structure(pdbf, model=1)
else:
raise ValueError("Invalid file extension")
# bbmask = filter_backbone(structure)
# structure = structure[bbmask]
all_chains = get_chains(structure)
if len(all_chains) == 0:
raise ValueError('No chains found in the input file.')
if chain is None:
chain_ids = all_chains
elif isinstance(chain, list):
chain_ids = chain
else:
chain_ids = [chain]
for chain in chain_ids:
if chain not in all_chains:
raise ValueError(f'Chain {chain} not found in input file')
chain_filter = [a.chain_id in chain_ids for a in structure]
structure = structure[chain_filter]
return structure
def extract_coords_from_structure(structure: biotite.structure.AtomArray):
"""
Args:
structure: An instance of biotite AtomArray
Returns:
Tuple coords
- coords is an L x 5 x 3 array for N, C, O, CA, CB coordinates
"""
coords = get_atom_coords_residue_wise(["N", "C", "O", "CA", "CB"], structure)
return coords
def extract_sidechain_from_structure(structure: biotite.structure.AtomArray):
"""
Args:
structure: An instance of biotite AtomArray
Returns:
Tuple coords
- coords is an L x 31 x 3 array for side chain coordinates
"""
coords = get_atom_coords_residue_wise(['CD', 'CD1', 'CD2', 'CE', 'CE1',
'CE2', 'CE3', 'CG', 'CG1', 'CG2',
'CH2', 'CZ', 'CZ2', 'CZ3', 'ND1',
'ND2', 'NE', 'NE1', 'NE2', 'NH1',
'NH2', 'NZ', 'OD1', 'OD2', 'OE1',
'OE2', 'OG', 'OG1', 'OH', 'SD',
'SG'],
structure)
return coords
def extract_residues_from_structure(structure: biotite.structure.AtomArray):
"""
Args:
structure: An instance of biotite AtomArray
Returns:
Tuple (coords, seq)
- coords is an L x 3 x 3 array for N, CA, C coordinates
- seq is the extracted sequence
"""
residue_identities = get_residues(structure)[1]
seq = ''.join([ProteinSequence.convert_letter_3to1(r) for r in residue_identities])
return seq
def get_atom_coords_residue_wise(atoms: List[str], struct: biotite.structure.AtomArray):
"""
Example for atoms argument: ["N", "O", "CA", "C", "CB"]
"""
def filterfn(s, axis=None):
filters = np.stack([s.atom_name == name for name in atoms], axis=1)
filter_sum = filters.sum(0)
if not np.all(filter_sum <= np.ones(filters.shape[1])):
raise RuntimeError("structure has multiple atoms with same name")
index = filters.argmax(0)
coords = s[index].coord
coords[filter_sum == 0] = float("nan")
return coords
return biotite.structure.apply_residue_wise(struct, struct, filterfn)
def get_mutations(uniprot_id, transcript_id, seq, seq_orig_len,
pos_orig, ref_aa, alt_aa, max_len=1400, af2_file=None):
mutation = Mutation(uniprot_id, transcript_id, seq, seq_orig_len, pos_orig, ref_aa, alt_aa, max_len, af2_file)
if mutation.af2_file is None:
print(
f"No AF2 file found for this mutation "+
f"{mutation.uniprot_id}:{mutation.ref_aa}:{mutation.pos}:{mutation.alt_aa}. Skipping..."
)
return False
else:
return mutation
def get_random_point_mutations(uniprot_id, transcript_id, seq, seq_orig_len,
pos_orig, ref_aa, alt_aa, score):
if score == -1:
point_mutation = RandomPointMutation(uniprot_id, transcript_id, seq, seq_orig_len)
else:
point_mutation = Mutation(uniprot_id, transcript_id, seq, seq_orig_len, pos_orig, ref_aa, alt_aa)
if point_mutation.af2_file is None:
return False
else:
return point_mutation
def get_mask_predict_point_mutations(uniprot_id, transcript_id, seq, seq_orig_len,
pos_orig, ref_aa, alt_aa, max_len=2251, af2_file=None):
point_mutation = MaskPredictPointMutation(uniprot_id, transcript_id, seq, seq_orig_len, pos_orig, ref_aa, alt_aa, max_len, af2_file)
# print("finished loading point mutation")
if point_mutation.af2_file is None:
print(
f"No AF2 file found for this mutation "+
f"{point_mutation.uniprot_id}:{point_mutation.ref_aa}:{point_mutation.pos}:{point_mutation.alt_aa}. Skipping..."
)
return False
else:
return point_mutation
def get_coords_from_af2(af2_file, add_sidechain=False):
pdb_path = af2_file
structure = load_structure(pdb_path)
af2_coords = extract_coords_from_structure(structure)
if add_sidechain:
af2_coords_sidechain = extract_sidechain_from_structure(structure)
af2_coords = np.concatenate([af2_coords, af2_coords_sidechain], axis=1)
return af2_coords
def get_plddt_from_af2(af2_file):
pdb_file = PandasPdb().read_pdb(af2_file)
pdb_file = pdb_file.df['ATOM'].drop_duplicates(subset=['residue_number'])
plddt = pdb_file['b_factor'].values
return plddt
def get_dssp_from_af2(af2_file):
p = PDBParser()
with gzip.open(af2_file, 'rt') as f:
structure = p.get_structure('', f)
model = structure[0]
# try:
# dssp = DSSP(model, af2_file, file_type="PDB", dssp="/usr/bin/dssp")
# except Exception or UserWarning:
random.seed(hash(af2_file))
tmpfile = '/share/descartes/Users/gz2294/tmp/'+ ''.join(random.choices(string.ascii_letters, k=5)) + '.pdb'
with open(tmpfile, 'w') as f:
f.write(gzip.open(af2_file, 'rt').read())
dssp = DSSP(model, tmpfile, file_type="PDB", dssp="/share/descartes/Users/gz2294/miniconda3/bin/mkdssp")
os.remove(tmpfile)
# keys in dssp: index, aa, secondary struc, rsa, phi, psi, N-H-->O, O-->H-N, N-H-->O, O-->H-N
dssp = pd.DataFrame(dssp)
sec_struc = np.eye(len(DSSP_DICT), dtype=np.float32)[[DSSP_DICT.index(i) for i in dssp.iloc[:, 2].values]]
return np.concatenate([sec_struc,
dssp.iloc[:, 3].values[:, None],
dssp.iloc[:, 4].values[:, None] / 180 * np.pi,
dssp.iloc[:, 5].values[:, None] / 180 * np.pi], axis=1)
def get_ptm_from_mutation(mutation: Mutation, ptm_ref):
# for each af2 file, match the PTM anno to it
# get uniprotID
uniprotID = mutation.uniprot_id
ptm_ref = ptm_ref[ptm_ref['uniprotID'] == uniprotID]
seq = mutation.seq
# get fragment start and end
ptm_ref['pos'] = ptm_ref['pos'] - mutation.seq_start_orig - mutation.seq_start + 1
ptm_ref = ptm_ref[ptm_ref['pos'] >= 0]
ptm_ref = ptm_ref[ptm_ref['pos'] < mutation.seq_len]
ptm_mat = np.zeros([mutation.seq_len, len(PTM_DICT)])
for i in ptm_ref.index:
if ptm_ref['ref'].loc[i] == seq[ptm_ref['pos'].loc[i]]:
ptm_mat[ptm_ref['pos'].loc[i], PTM_DICT[ptm_ref['type'].loc[i]]] = 1
return ptm_mat
def get_knn_graphs_from_af2(af2_coords, radius=None, max_neighbors=None, loop=False, gpu_id=None):
CA_coord = af2_coords[:, 3]
if radius is None:
edge_index = np.indices((af2_coords.shape[0], af2_coords.shape[0])).reshape(2, -1)
# cancel self-edges
if not loop:
edge_index = edge_index[:, edge_index[0] != edge_index[1]]
else:
if max_neighbors is None:
max_neighbors = af2_coords.shape[0] + 1
with torch.no_grad():
CA_coord = torch.from_numpy(CA_coord)
edge_index = knn_graph(
x=CA_coord.to(f'cuda:{gpu_id}') if gpu_id is not None and torch.cuda.is_available() else CA_coord,
# r=radius,
loop=loop,
# max_num_neighbors=max_neighbors,
k=max_neighbors,
num_workers=NUM_THREADS,
).detach().cpu().numpy()
del CA_coord
return edge_index
def get_radius_graphs_from_af2(af2_coords, radius, loop=False, gpu_id=None):
CA_coord = af2_coords[:, 3]
max_neighbors = af2_coords.shape[0] + 1
with torch.no_grad():
CA_coord = torch.from_numpy(CA_coord)
edge_index = radius_graph(
x=CA_coord.to(f'cuda:{gpu_id}') if gpu_id is not None and torch.cuda.is_available() else CA_coord,
r=radius,
loop=loop,
max_num_neighbors=max_neighbors,
num_workers=NUM_THREADS,
).detach().cpu().numpy()
del CA_coord
return edge_index
def get_radius_knn_graphs_from_af2(af2_coords, center_nodes, radius, max_neighbors, loop=False, gpu_id=None):
# first get radius graph at the center nodes, then get knn graph for other nodes
CA_coord = af2_coords[:, 3]
with torch.no_grad():
CA_coord = torch.from_numpy(CA_coord)
edge_index = radius_graph(
x=CA_coord.to(f'cuda:{gpu_id}') if gpu_id is not None and torch.cuda.is_available() else CA_coord,
r=radius,
loop=loop,
max_num_neighbors=af2_coords.shape[0] + 1,
num_workers=NUM_THREADS,
).detach().cpu().numpy()
# filter edge_index so that only center nodes are kept
edge_index_radius = edge_index[:, np.isin(edge_index[0], center_nodes)]
# next get knn graph for other nodes
edge_index = knn_graph(
x=CA_coord.to(f'cuda:{gpu_id}') if gpu_id is not None and torch.cuda.is_available() else CA_coord,
loop=loop,
k=max_neighbors,
num_workers=NUM_THREADS,
).detach().cpu().numpy()
del CA_coord
# only keep nodes that are in the radius graph
edge_index = edge_index[:, np.isin(edge_index[0], edge_index_radius.flatten()) & np.isin(edge_index[1], edge_index_radius.flatten())]
return edge_index
def get_graphs_from_neighbor(af2_coords, max_neighbors=None, loop=False):
nodes = af2_coords.shape[0]
if max_neighbors is None:
# full graph
max_neighbors = nodes + 1
edge_graph = np.ones((nodes, nodes))
# fill upper triangle with 0
edge_graph *= np.tri(nodes, k=int(np.floor(max_neighbors / 2))) \
* np.tri(nodes, k=int(np.floor(max_neighbors / 2))).T
edge_index = np.array(np.where(edge_graph == 1))
if not loop:
edge_index = edge_index[:, edge_index[0] != edge_index[1]]
return edge_index
def get_embedding_from_esm2(protein, check_mode=True, seq_start=None, seq_end=None):
if isinstance(protein, str):
file_path = f"{ESM_DATA_PATH}/{protein}.representations.layer.48.npy"
if os.path.exists(file_path):
if check_mode:
return True
wt_orig = np.load(file_path)
# TODO: I am removing the <BOS> and <EOS> tokens, not sure if this is correct
batch_tokens = wt_orig[max(0, seq_start):
min(wt_orig.shape[0] - 1, seq_end + 1)]
else:
if check_mode:
return False
batch_tokens = np.zeros([seq_end - seq_start + 1, 5120 if ESM_MODEL_SIZE == "15B" else 1280])
elif isinstance(protein, np.ndarray):
batch_tokens = protein[max(0, seq_start):
min(protein.shape[0] - 1, seq_end + 1)]
else:
raise ValueError("protein must be either a string of uniprotID or a numpy array")
return batch_tokens
def get_esm_dict_from_uniprot(uniprotID):
file_path = f"{ESM_DATA_PATH}/{uniprotID}.representations.layer.48.npy"
wt_orig = np.load(file_path)
return wt_orig
def get_af2_single_rep_dict_from_prefix(uniprotID_prefix, filter=False):
# sometimes colabfold will padding the results, we need to remove the padding
file_path = f"{uniprotID_prefix}_single_repr_rank_001_alphafold2_ptm_model_1_seed_000.npy"
wt_orig = np.load(file_path)
# padding_length = 0
# last_i = 1
# while np.all(wt_orig[-last_i-1] == wt_orig[-last_i]):
# # remove the last line if it is the same as the second last line
# last_i -= 1
# padding_length += 1
# if padding_length > 0:
# wt_orig = wt_orig[:-(padding_length+1)]
return wt_orig
def get_af2_pairwise_rep_dict_from_prefix(uniprotID_prefix):
file_path = f"{uniprotID_prefix}_pair_repr_rank_001_alphafold2_ptm_model_1_seed_000.npy"
wt_orig = np.load(file_path)
# padding_length = 0
# last_i = 1
# while np.all(wt_orig[-last_i-1] == wt_orig[-last_i]):
# # remove the last line if it is the same as the second last line
# last_i -= 1
# padding_length += 1
return wt_orig
def get_embedding_from_esm1b(protein, check_mode=True, seq_start=None, seq_end=None):
if isinstance(protein, str):
file_path = f"/share/vault/Users/gz2294/Data/DMS/ClinVar.HGMD.PrimateAI.syn/esm1b.embedding.uniprotIDs/{protein}.representations.layer.48.npy"
if os.path.exists(file_path):
if check_mode:
return True
wt_orig = np.load(file_path)
# TODO: I am removing the <BOS> and <EOS> tokens, not sure if this is correct
batch_tokens = wt_orig[max(0, seq_start):
min(wt_orig.shape[0] - 1, seq_end + 1)]
else:
if check_mode:
return False
batch_tokens = np.zeros([seq_end - seq_start + 1, 5120 if ESM_MODEL_SIZE == "15B" else 1280])
elif isinstance(protein, np.ndarray):
batch_tokens = protein[max(0, seq_start):
min(protein.shape[0] - 1, seq_end + 1)]
else:
raise ValueError("protein must be either a string of uniprotID or a numpy array")
return batch_tokens
def get_embedding_from_onehot(seq, seq_start=None, seq_end=None, return_idx=False, aa_dict=None, return_onehot_mat=False):
if aa_dict is None:
idx = [AA_DICT.index(aa) for aa in seq]
protein = np.eye(len(AA_DICT))[idx]
one_hot_mat = np.eye(len(AA_DICT))
else:
idx = [aa_dict.index(aa) for aa in seq]
protein = np.eye(len(aa_dict))[idx]
one_hot_mat = np.eye(len(aa_dict))
if seq_start is not None and seq_end is not None:
batch_tokens = protein[max(0, seq_start - 1): min(protein.shape[0], seq_end)]
else:
batch_tokens = protein
if return_idx:
if return_onehot_mat:
return batch_tokens, np.array(idx), one_hot_mat
else:
return batch_tokens, np.array(idx)
else:
if return_onehot_mat:
return batch_tokens, one_hot_mat
else:
return batch_tokens
def get_embedding_from_esm_onehot(seq, seq_start=None, seq_end=None, return_idx=False, aa_dict=None, return_onehot_mat=False):
if aa_dict is None:
idx = [ESM_TOKENS.index('<cls>')] + [ESM_TOKENS.index(aa) for aa in seq] + [ESM_TOKENS.index('<eos>')]
# directly return idxs but not one-hot matrix
protein = np.array(idx)
else:
idx = [aa_dict.index(aa) for aa in seq]
protein = np.array(idx)
if seq_start is not None and seq_end is not None:
batch_tokens = protein[max(0, seq_start - 1): min(protein.shape[0], seq_end)]
else:
batch_tokens = protein
if return_idx:
if return_onehot_mat:
return batch_tokens, np.array(idx), None
else:
return batch_tokens, np.array(idx)
else:
if return_onehot_mat:
return batch_tokens, None
else:
return batch_tokens
def get_embedding_from_5dim(seq, seq_start=None, seq_end=None):
protein = np.array([AA_5DIM_EMBED[aa] for aa in seq])
if seq_start is not None and seq_end is not None:
batch_tokens = protein[max(0, seq_start - 1): min(protein.shape[0], seq_end)]
else:
batch_tokens = protein
return batch_tokens
def get_embedding_from_onehot_nonzero(seq, seq_start=None, seq_end=None, return_idx=False,
aa_dict=None, min_prob=0.001, return_onehot_mat=False):
if aa_dict is None:
aa_dict = AA_DICT
one_hot_mat = np.eye(len(aa_dict))
n_special_tok = 0
for special_tok in ['<mask>', '<pad>']:
if special_tok in aa_dict:
one_hot_mat[aa_dict.index(special_tok), :] = -1
one_hot_mat[:, aa_dict.index(special_tok)] = -1
one_hot_mat[aa_dict.index(special_tok), aa_dict.index(special_tok)] = 2
n_special_tok += 1
one_hot_mat[one_hot_mat == 0] = min_prob
one_hot_mat[one_hot_mat == 1] = 1 - min_prob * (len(aa_dict) - n_special_tok)
one_hot_mat[one_hot_mat == -1] = 0
one_hot_mat[one_hot_mat == 2] = 1
idx = [aa_dict.index(aa) for aa in seq]
protein = one_hot_mat[idx]
if seq_start is not None and seq_end is not None:
batch_tokens = protein[max(0, seq_start - 1): min(protein.shape[0], seq_end)]
else:
batch_tokens = protein
if return_idx:
if return_onehot_mat:
return batch_tokens, np.array(idx), one_hot_mat
else:
return batch_tokens, np.array(idx)
else:
if return_onehot_mat:
return batch_tokens, one_hot_mat
else:
return batch_tokens
# TODO: conservation should only from 1:21, not 1:41
def get_conservation_from_msa(mutation: Mutation, check_mode=False):
transcript = mutation.transcript_id
seq = mutation.seq
seq_start = mutation.seq_start_orig
seq_end = mutation.seq_end_orig
if seq_start is None:
seq_start = 1
if seq_end is None:
seq_end = len(seq)
msa_alphabet = np.array(list('ACDEFGHIKLMNPQRSTVWYU'))
if not os.path.exists(f'{MSA_DATA_PATH}/{transcript}.pickle'):
matched_line = False
else:
with open(os.path.join(MSA_DATA_PATH, transcript + '.pickle'), 'rb') as file:
msa_mat = pickle.load(file)
msa_seq = ''.join(msa_alphabet[msa_mat[seq_start - 1:seq_end, 0].astype(int)])
if mutation.crop:
msa_seq = msa_seq[mutation.seq_start -1:mutation.seq_end]
matched_line = msa_seq == seq
if matched_line:
if check_mode:
return True
# 1:20 is conservation from hhblits, 21:41 is conservation from compara
conservation = msa_mat[seq_start - 1:seq_end, 1:41]
else:
if check_mode:
return False
conservation = np.zeros([seq_end - seq_start + 1, 40])
if mutation.crop:
conservation = conservation[mutation.seq_start -1:mutation.seq_end]
return conservation
def get_msa_dict_from_transcript_archive(transcript):
msa_alphabet = np.array(list('ACDEFGHIKLMNPQRSTVWYU'))
if pd.isna(transcript) or not os.path.exists(f'{MSA_DATA_PATH}/{transcript}.pickle'):
msa_seq = ''
conservation = np.zeros([0, 20])
msa = np.zeros([0, 200])
else:
with open(os.path.join(MSA_DATA_PATH, transcript + '.pickle'), 'rb') as file:
msa_mat = pickle.load(file)
msa_seq = ''.join(msa_alphabet[msa_mat[:, 0].astype(int)])
conservation = msa_mat[:, 1:21]
msa = msa_mat[:, 21:221]
return msa_seq, conservation, msa
def get_msa_dict_from_transcript(uniprotID):
msa_alphabet = np.array(list('ACDEFGHIKLMNPQRSTVWYU'))
if pd.isna(uniprotID) or not os.path.exists(f'{MSA_DATA_PATH}/{uniprotID}_MSA.npy'):
msa_seq = ''
conservation = np.zeros([0, 20])
msa = np.zeros([0, 199])
else:
msa_mat = np.load(f'{MSA_DATA_PATH}/{uniprotID}_MSA.npy')
msa_seq = ''.join(msa_alphabet[msa_mat[:, 0].astype(int)])
conservation = np.eye(21)[msa_mat.astype(int)].mean(axis=1)[:, :20]
msa = msa_mat
return msa_seq, conservation, msa
def get_confidence_from_af2file(af2file, pLDDT):
uniprotID = af2file.split('/')[-1].split('.')[0].split('-model')[0]
if pd.isna(uniprotID) or not os.path.exists(f'{PAE_DATA_PATH}/{uniprotID[3:6]}/{uniprotID}-predicted_aligned_error_v4.json.gz'):
# if PAE does not exist, use pLDDT
# pae = (pLDDT[None, :] + pLDDT[:, None]) / 200 if not pLDDT is None else None
pae = (200 - pLDDT[None, :] - pLDDT[:, None]) / 4 if not pLDDT is None else None
else:
with gzip.open(f'{PAE_DATA_PATH}/{uniprotID[3:6]}/{uniprotID}-predicted_aligned_error_v4.json.gz', 'rt') as f:
pae = json.load(f)
# pae = np.exp(-0.08*np.array(pae[0]['predicted_aligned_error']))
pae = np.array(pae[0]['predicted_aligned_error'])
return pae
def get_msa(mutation: Mutation, check_mode=False):
transcript = mutation.transcript_id
seq = mutation.seq
seq_start = mutation.seq_start_orig
seq_end = mutation.seq_end_orig
if seq_start is None:
seq_start = 1
if seq_end is None:
seq_end = len(seq)
msa_alphabet = np.array(list('ACDEFGHIKLMNPQRSTVWYU'))
if not os.path.exists(f'{MSA_DATA_PATH}/{transcript}.pickle'):
matched_line = False
else:
with open(os.path.join(MSA_DATA_PATH, transcript + '.pickle'), 'rb') as file:
msa_mat = pickle.load(file)
msa_seq = ''.join(msa_alphabet[msa_mat[seq_start - 1:seq_end, 0].astype(int)])
if mutation.crop:
msa_seq = msa_seq[mutation.seq_start -1:mutation.seq_end]
matched_line = msa_seq == seq
if matched_line:
if check_mode:
return True
# 1:20 is conservation from hhblits, 1:21 is conservation from compara
msa = msa_mat[seq_start - 1:seq_end, 21:221]
else:
if check_mode:
return False
msa = np.zeros([seq_end - seq_start + 1, 200])
if mutation.crop:
msa = msa[mutation.seq_start -1:mutation.seq_end]
return msa
def get_logits_from_esm2(protein, check_mode=True, seq_start=None, seq_end=None):
if isinstance(protein, str):
file_path = f"{ESM_DATA_PATH}/{protein}.logits.npy"
if os.path.exists(file_path):
if check_mode:
return True
wt_orig = np.load(file_path)
# TODO: I am removing the <BOS> and <EOS> tokens, not sure if this is correct
batch_tokens = wt_orig[max(0, seq_start):
min(wt_orig.shape[0] - 1, seq_end + 1)]
else:
if check_mode:
return False
batch_tokens = np.zeros([seq_end - seq_start + 1, 32])
elif isinstance(protein, np.ndarray):
batch_tokens = protein[max(0, seq_start):
min(protein.shape[0] - 1, seq_end + 1)]
else:
raise ValueError("protein must be either a string of uniprotID or a numpy array")
return batch_tokens
def get_attn_from_msa(transcript, seq, check_mode=False, seq_start=None, seq_end=None):
NUM_LAYERS = 6
msa_alphabet = np.array(list('ACDEFGHIKLMNPQRSTVWYU'))
if isinstance(transcript, str):
if pd.isna(transcript) \
or not os.path.exists(f'{MSA_DATA_PATH}/{transcript}.pickle') \
or not os.path.exists(f'{MSA_ATTN_DATA_PATH}/{transcript}.row_attentions.pt'):
matched_line = False
else:
with open(os.path.join(MSA_DATA_PATH, transcript + '.pickle'), 'rb') as file:
msa_mat = pickle.load(file)
if seq_start is None:
seq_start = 1
if seq_end is None:
seq_end = len(seq)
msa_seq = ''.join(msa_alphabet[msa_mat[seq_start - 1:seq_end, 0].astype(int)])
matched_line = msa_seq == seq
if matched_line:
if check_mode:
return True
msa_row_attns = torch.load(
os.path.join(MSA_ATTN_DATA_PATH, transcript + '.row_attentions.pt')).detach().numpy()
msa_contacts = torch.load(os.path.join(MSA_ATTN_DATA_PATH, transcript + '.contacts.pt')).detach().numpy()
# R file parse seq_start starting from 1, so we need to minus 1
# only use last 6 attn layers
msa_row_attns = msa_row_attns[:, (12 - NUM_LAYERS):, :, seq_start - 1:seq_end, seq_start - 1:seq_end]
msa_contacts = msa_contacts[:, seq_start - 1:seq_end, seq_start - 1:seq_end]
msa_pairwise = np.concatenate([msa_row_attns.reshape(-1, msa_row_attns.shape[-2], msa_row_attns.shape[-1]),
msa_contacts], axis=0).transpose((1, 2, 0))
else:
if check_mode:
return False
msa_pairwise = np.zeros([seq_end - seq_start + 1, seq_end - seq_start + 1, NUM_LAYERS * 12 + 1])
elif isinstance(transcript, tuple):
msa_row_attns = transcript[0]
msa_contacts = transcript[1]
if msa_row_attns is not None and msa_contacts is not None:
msa_row_attns = msa_row_attns[:, (12 - NUM_LAYERS):, :, seq_start - 1:seq_end, seq_start - 1:seq_end]
msa_contacts = msa_contacts[:, seq_start - 1:seq_end, seq_start - 1:seq_end]
msa_pairwise = np.concatenate([msa_row_attns.reshape(-1, msa_row_attns.shape[-2], msa_row_attns.shape[-1]),
msa_contacts], axis=0).transpose((1, 2, 0))
else:
msa_pairwise = np.zeros([seq_end - seq_start + 1, seq_end - seq_start + 1, NUM_LAYERS * 12 + 1])
else:
raise ValueError("transcript must be either a string of transcriptID"
" or a tuple of msa_row_attns and msa_contacts")
return msa_pairwise
def get_contacts_from_msa(mutation: Mutation, check_mode=False):
transcript = mutation.transcript_id
seq = mutation.seq
seq_start = mutation.seq_start
seq_end = mutation.seq_end
msa_alphabet = np.array(list('ACDEFGHIKLMNPQRSTVWYU'))
if pd.isna(transcript) \
or not os.path.exists(f'{MSA_DATA_PATH_ARCHIVE}/{transcript}.pickle') \
or not os.path.exists(f'{MSA_ATTN_DATA_PATH}/{transcript}.contacts.pt'):
matched_line = False
else:
with open(os.path.join(MSA_DATA_PATH_ARCHIVE, transcript + '.pickle'), 'rb') as file:
msa_mat = pickle.load(file)
if seq_start is None:
seq_start = 1
if seq_end is None:
seq_end = len(seq)
msa_seq = ''.join(msa_alphabet[msa_mat[seq_start - 1:seq_end, 0].astype(int)])
matched_line = msa_seq == seq
if matched_line:
if check_mode:
return True
msa_contacts = torch.load(os.path.join(MSA_ATTN_DATA_PATH, transcript + '.contacts.pt')).detach().numpy()
# R file parse seq_start starting from 1, so we need to minus 1
msa_contacts = msa_contacts[:, seq_start - 1:seq_end, seq_start - 1:seq_end]
msa_pairwise = msa_contacts.transpose((1, 2, 0))
else:
# no esm_msa file, try esm2 predicted contacts instead
if not os.path.exists(f'{ESM_DATA_PATH}/{mutation.ESM_prefix}.contacts.npy'):
if check_mode:
return False
msa_pairwise = np.zeros([seq_end - seq_start + 1, seq_end - seq_start + 1, 1])
else:
if check_mode:
return True
msa_pairwise = np.load(f'{ESM_DATA_PATH}/{mutation.ESM_prefix}.contacts.npy')
msa_pairwise = np.expand_dims(msa_pairwise[seq_start - 1:seq_end, seq_start - 1:seq_end], axis=2)
return msa_pairwise
# unused
def get_contacts_from_msa_by_identifier(identifier):
str_split = identifier.split(":")
transcript = str_split[0]
seq = str_split[1]
seq_start = int(str_split[2])
seq_end = int(str_split[3])
check_mode = False
return get_contacts_from_msa(transcript, seq, check_mode, seq_start, seq_end)
# unused
def load_embedding_from_esm2(protein):
file_path = f"{ESM_DATA_PATH}/{protein}.representations.layer.48.npy"
assert os.path.exists(file_path)
return np.load(file_path)
# unused
def load_logits_from_esm2(protein):
file_path = f"{ESM_DATA_PATH}/{protein}.logits.npy"
assert os.path.exists(file_path)
return np.load(file_path)
# unused
def load_attn_from_msa(transcript):
if os.path.exists(os.path.join(MSA_ATTN_DATA_PATH, transcript + '.row_attentions.pt')) and \
os.path.exists(os.path.join(MSA_ATTN_DATA_PATH, transcript + '.contacts.pt')):
msa_row_attns = torch.load(os.path.join(MSA_ATTN_DATA_PATH, transcript + '.row_attentions.pt')).detach().numpy()
msa_contacts = torch.load(os.path.join(MSA_ATTN_DATA_PATH, transcript + '.contacts.pt')).detach().numpy()
return msa_row_attns, msa_contacts
else:
return None, None
def _test_load():
test_file = pd.read_csv('/share/terra/Users/gz2294/ld1/Data/DMS/ClinVar.HGMD.PrimateAI.syn/training.csv',
index_col=0)
# idx = np.where(test_file.uniprotID == 'Q8WZ42')[0][0]
idx = np.where(test_file['sequence.len.orig'] == 4753)[0][0]
point_mutation = get_mutations(test_file['uniprotID'].iloc[idx],
test_file['ENST'].iloc[idx],
test_file['wt.orig'].iloc[idx],
test_file['sequence.len.orig'].iloc[idx],
test_file['pos.orig'].iloc[idx],
test_file['ref'].iloc[idx],
test_file['alt'].iloc[idx])
coords = get_coords_from_af2(point_mutation.af2_file)
CA_coord = coords[:, 3]
embed_data = get_embedding_from_esm2(point_mutation.uniprot_id, False,
point_mutation.seq_start, point_mutation.seq_end)
# prepare edge features
coev_strength = get_attn_from_msa(point_mutation.transcript_id, point_mutation.seq, False,
point_mutation.seq_start, point_mutation.seq_end)
edge_index = np.indices((coords.shape[0], coords.shape[0])).reshape(2, -1)
# cancel self-edges
edge_index = edge_index[:, edge_index[0] != edge_index[1]]
edge_attr = coev_strength[edge_index[0], edge_index[1], :]
# prepare node vector features
CA_CB = coords[:, [4]] - coords[:, [3]]
CA_C = coords[:, [1]] - coords[:, [3]]
CA_O = coords[:, [2]] - coords[:, [3]]
CA_N = coords[:, [0]] - coords[:, [3]]
nodes_vector = np.concatenate([CA_CB, CA_C, CA_O, CA_N], axis=1)
# prepare graph
features = dict(
pos=torch.from_numpy(CA_coord), x=torch.from_numpy(embed_data),
edge_index=torch.from_numpy(edge_index), edge_attr=torch.from_numpy(edge_attr).to(torch.float),
node_vec_attr=torch.from_numpy(nodes_vector).transpose(1, 2)
)
from torch_geometric.data import Data
map_data = Data(**features)
return map_data
if __name__ == '__main__':
print(_test_load())
|