File size: 44,412 Bytes
7718235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
import gzip
import json
import os
import pickle
from abc import abstractmethod
from os.path import exists
from typing import List
import string
import random
import biotite.structure
import numpy as np
import pandas as pd
import socket
import torch
from Bio.PDB import PDBParser
from Bio.PDB.DSSP import DSSP
from biopandas.pdb import PandasPdb
from biotite.sequence import ProteinSequence
from biotite.structure import get_chains
from biotite.structure.io import pdbx, pdb
from biotite.structure.residues import get_residues
from torch_cluster import radius_graph, knn_graph

# Path to the AF2 data
AF2_DATA_PATH = './data.files/af2.files/'
# unused in this version
AF2_REP_DATA_PATH = "NA"
# Path to the AF2 data
ESM_MODEL_SIZE = '650M'
ESM_DATA_PATH = f'./data.files/esm.files/'
# Path to the ESM2 data
MSA_DATA_PATH_ARCHIVE = './data.files/gMVP.MSA/'
MSA_DATA_PATH = './data.files/MSA/'
# unused in this version
PAE_DATA_PATH = 'NA'
# Path to the ESM_MSA data
# TODO: update the path
MSA_ATTN_DATA_PATH = './data.files/esm.MSA/'
NUM_THREADS = 42
# prepare esm2 embeddings
with open(f'./utils/LANGUAGE_MODEL.{ESM_MODEL_SIZE}.pkl', 'rb') as f:
    LANGUAGE_MODEL = pickle.load(f)
with open(f'./utils/ALPHABET_CONVERTER.{ESM_MODEL_SIZE}.pkl', 'rb') as f:
    ALPHABET_CONVERTER = pickle.load(f)
with open(f'./utils/ESM_AA_EMBEDDING_DICT.{ESM_MODEL_SIZE}.pkl', 'rb') as f:
    ESM_AA_EMBEDDING_DICT = pickle.load(f)
with open(f'./utils/ESM_AA_EMBEDDING_DICT.esm1b.pkl', 'rb') as f:
    ESM1b_AA_EMBEDDING_DICT = pickle.load(f)
# prepare 5dim embeddings
with open(f'./utils/AA_5_DIM_EMBED.pkl', 'rb') as f:
    AA_5DIM_EMBED = pickle.load(f)
# ESM tokens
ESM_TOKENS = ['<cls>', '<pad>', '<eos>', '<unk>',
              'L', 'A', 'G', 'V', 'S', 'E', 'R', 'T', 'I', 'D',
              'P', 'K', 'Q', 'N', 'F', 'Y', 'M', 'H', 'W', 'C',
              'X', 'B', 'U', 'Z', 'O', '.', '-',
              '<null_1>', '<mask>']
# amino acid dictionary, no padding token because it is not used (batch size is 1 as limited by GPU memory)
AA_DICT = ['L', 'A', 'G', 'V', 'S', 'E', 'R', 'T', 'I', 'D',
           'P', 'K', 'Q', 'N', 'F', 'Y', 'M', 'H', 'W', 'C',
           'X', 'B', 'U', 'Z', 'O', '<mask>']
AA_DICT_HUMAN = ['L', 'A', 'G', 'V', 'S', 'E', 'R', 'T', 'I', 'D',
                 'P', 'K', 'Q', 'N', 'F', 'Y', 'M', 'H', 'W', 'C']
DSSP_DICT = ['H', 'B', 'E', 'G', 'I', 'T', 'S', '-', 'P']
PTM_DICT = {'ac': 0, 'ga': 1, 'gl': 2, 'm1': 3, 'm2': 4, 'm3': 5, 'me': 6, 'p': 7, 'sm': 8, 'ub': 9}

class Mutation:
    """
    A mutation object that stores the information of a mutation.
    Can specify max_len of sequence to crop the sequence.
    Can specify af2_file to ignore the input sequence and use the AF2 sequence instead.
    """
    def __init__(self, uniprot_id, transcript_id, seq_orig, seq_orig_len, pos_orig, ref_aa, alt_aa, max_len=2251, af2_file=None):
        # initialize attributes
        self.seq = None
        self.seq_start = None
        self.seq_end = None
        self.seq_start_orig = None
        self.seq_end_orig = None
        self.pos = None
        self.uniprot_id = None
        self.af2_file = None
        self.af2_rep_file_prefix = None
        self.af2_seq_index = None
        self.msa_seq_index = None
        self.esm_seq_index = None
        self.af2_rep_index = None
        self.ref_aa = None
        self.alt_aa = None
        self.ESM_prefix = None
        self.crop = False
        self.seq_len = None
        self.seq_len_orig = None
        self.max_len = max_len
        self.half_max_len = max_len // 2
        self.set_af2_fragment_idx(seq_orig, seq_orig_len, uniprot_id, pos_orig, af2_file)
        self.transcript_id = transcript_id
        self.set_ref_alt_aa(ref_aa, alt_aa)
        self.init_af2_file_idx()
        self.crop_fn()
        
    def set_af2_fragment_idx(self, seq_orig, seq_orig_len, uniprot_id, pos_orig, af2_file):
        self.seq_len_orig = seq_orig_len
        if isinstance(pos_orig, str):
            pos_orig = np.array([int(i) for i in pos_orig.split(';')])
        else:
            pos_orig = np.array([int(pos_orig)])
        if af2_file is None or pd.isna(af2_file):
            if uniprot_id.find('-F') != -1:
                idx = int(uniprot_id.split('-F')[-1])
                uniprot_id = uniprot_id.split('-F')[0]
                seq_start = 1
                seq_end = seq_orig_len
                self.seq_start_orig = seq_start
                self.seq_end_orig = seq_end
                seq = seq_orig
                pos = pos_orig
                self.ESM_prefix = f'{uniprot_id}-F{idx}'
                seq_len = 1400
                self.af2_rep_file_prefix = f'{AF2_REP_DATA_PATH}/{uniprot_id}-F{idx}/{uniprot_id}-F{idx}'
            else:
                self.ESM_prefix = f'{uniprot_id}'
                if seq_orig_len > 2700:
                    idx = min(max(1, pos_orig[0] // 200 - 2), seq_orig_len // 200 - 5)
                    seq_start = (idx - 1) * 200 + 1
                    seq_end = min((idx + 6) * 200, seq_orig_len)
                    self.seq_start_orig = seq_start
                    self.seq_end_orig = seq_end
                    seq = seq_orig[seq_start - 1:seq_end]
                    pos = pos_orig - seq_start + 1
                    seq_len = seq_end - seq_start + 1
                    seq_start = 1
                    seq_end = seq_len
                else:
                    idx = 1
                    seq_start = 1
                    seq_end = seq_orig_len
                    self.seq_start_orig = seq_start
                    self.seq_end_orig = seq_end
                    seq_len = seq_orig_len
                    seq = seq_orig
                    pos = pos_orig
                if uniprot_id == "Q8WZ42": # This protein is TTN, which is too long
                    self.ESM_prefix = f'{uniprot_id}-F{idx}'
                if seq_orig_len >= 7000:
                    self.af2_rep_file_prefix = f'{AF2_REP_DATA_PATH}/{uniprot_id}-F{idx}/{uniprot_id}-F{idx}'
                else:
                    self.af2_rep_file_prefix = f'{AF2_REP_DATA_PATH}/{uniprot_id}/{uniprot_id}'
            self.seq = seq
            self.seq_start = seq_start
            self.seq_end = seq_end
            self.seq_len = seq_len
            self.pos = pos
            self.uniprot_id = uniprot_id
            self.af2_file = f'{AF2_DATA_PATH}/AF-{uniprot_id}-F{idx}-model_v4.pdb.gz'
        else:
            self.af2_file = af2_file
            self.ESM_prefix = uniprot_id
            self.seq = seq_orig
            self.seq_start = 1
            self.seq_end = seq_orig_len
            self.seq_start_orig = self.seq_start
            self.seq_end_orig = self.seq_end
            self.seq_len = seq_orig_len
            self.pos = pos_orig
            self.uniprot_id = uniprot_id

    def set_ref_alt_aa(self, ref_aa, alt_aa):
        # ref aa and alt aa are strings
        if ";" in ref_aa or ";" in alt_aa:
            # multiple mutations
            self.ref_aa = np.array(ref_aa.split(';'))
            self.alt_aa = np.array(alt_aa.split(';'))
        else:
            # single mutation
            self.ref_aa = np.array([ref_aa])
            self.alt_aa = np.array([alt_aa])

    def init_af2_file_idx(self):
        if not exists(self.af2_file):
            print(f'Warning: {self.uniprot_id} AF2 file not found: {self.af2_file}')
            self.af2_file = None
        # else:
        #     af2_seq = AF2_SEQ_DICT[self.af2_file]['seq']
        #     if af2_seq != self.seq and not self.crop:
        #         # if not match and not due to crop, then the seq is not in the AF2 file
        #         print(f'Warning: {self.uniprot_id} seq not match AF2 seq: {self.seq} vs {af2_seq}')
        #         self.af2_file = None
        self.af2_seq_index = None  # Use index to avoid loading the same seq multiple times

    def crop_fn(self):
        seq_len = self.seq_len
        pos = self.pos
        seq_start = self.seq_start
        seq_end = self.seq_end
        seq = self.seq
        # remove sequence longer than max_len
        if seq_len >= self.max_len:
            if pos[0] <= self.half_max_len:
                seq_start = 1
                seq_end = self.max_len
                seq = seq[:self.max_len]
                pos = pos
                seq_len = self.max_len
            elif seq_len - pos[0] <= self.max_len - self.half_max_len:
                seq_start = seq_len - self.max_len + 1
                seq_end = seq_len
                seq = seq[seq_start - 1:]
                pos = pos - seq_start + 1
                seq_len = self.max_len
            else:
                seq_start = pos[0] - self.half_max_len
                seq_end = pos[0] + self.max_len - self.half_max_len - 1
                seq = seq[seq_start - 1:seq_end]
                pos = pos - seq_start + 1
                seq_len = self.max_len
            self.crop = True
            self.seq = seq
            self.seq_start = seq_start
            self.seq_end = seq_end
            self.seq_len = seq_len
            self.pos = pos

    def set_af2_seq_index(self, idx):
        self.af2_seq_index = idx

    def set_msa_seq_index(self, idx):
        self.msa_seq_index = idx

    def set_esm_seq_index(self, idx):
        self.esm_seq_index = idx
    
    def set_af2_rep_index(self, idx):
        self.af2_rep_index = idx


class RandomPointMutation(Mutation):
    def __init__(self, uniprot_id, transcript_id, seq_orig, seq_orig_len, max_len=2251):
        pos_orig = np.random.randint(1, seq_orig_len + 1)
        ref_aa = seq_orig[pos_orig - 1]
        alt_aa = np.random.choice(list("ACDEFGHIKLMNPQRSTVWY"))
        super().__init__(uniprot_id, transcript_id, seq_orig, seq_orig_len, pos_orig, ref_aa, alt_aa, max_len)


class MaskPredictPointMutation(Mutation):
    # a class that support mask and predict as well as point mutation
    def __init__(self, uniprot_id, transcript_id, seq_orig, seq_orig_len, pos_orig, ref_aa, alt_aa, max_len=2251, af2_file=None):
        if pos_orig is None or pos_orig == 0:
            pos_orig = np.random.randint(1, seq_orig_len + 1)
        self.ESM_prefix = None
        self.max_len = max_len
        self.half_max_len = max_len // 2
        super().__init__(uniprot_id, transcript_id, seq_orig, seq_orig_len, pos_orig, ref_aa, alt_aa, max_len=max_len, af2_file=af2_file)
        # don't need ESM prefix

    def init_af2_file_idx(self):
        # don't check whether seq match AF2 seq
        if not exists(self.af2_file):
            print(f'Warning: {self.uniprot_id} AF2 file not found: {self.af2_file}')
            self.af2_file = None
        self.af2_seq_index = None  # Use index to avoid loading the same seq multiple times


def convert_to_onesite(dataset: pd.DataFrame):
    # first get unique uniprotID and pos.orig
    if 'ref_aa' not in dataset.columns:
        dataset['ref_aa'] = dataset['ref']
    if 'alt_aa' not in dataset.columns:
        dataset['alt_aa'] = dataset['alt']
    dataset_onesite = dataset.copy(deep=True)
    dataset_onesite = dataset_onesite.drop_duplicates(subset=['uniprotID', 'pos.orig'])
    # then for each unique uniprotID and pos.orig, get all ref and alt aa, as well as their scores
    # if exists the confidence of score, then use it, otherwise use 1
    # get score and confidence.score columns
    score_cols = [col for col in dataset.columns if col.startswith('score')]
    confidence_cols = [col for col in dataset.columns if col.startswith('confidence.score')]
    # if confidence_cols is empty, then use 1
    if len(confidence_cols) == 0:
        confidence_cols = [f'confidence.score.{i}' for i in range(len(score_cols))]
        for col in confidence_cols:
            dataset[col] = 1
            dataset_onesite[col] = 1
    for i in dataset_onesite.index:
        subdataset = dataset[(dataset['uniprotID'] == dataset_onesite.loc[i, 'uniprotID']) & (dataset['pos.orig'] == dataset_onesite.loc[i, 'pos.orig'])]
        dataset_onesite.loc[i, 'ref_aa'] = ';'.join(subdataset['ref_aa'].values)
        dataset_onesite.loc[i, 'alt_aa'] = ';'.join(subdataset['alt_aa'].values)
        # if score_cols and confidence_cols are not empty, then concatenate them
        if len(score_cols) > 0:
            for col in score_cols:
                dataset_onesite.loc[i, col] = ';'.join(subdataset[col].values.astype('str'))
        if len(confidence_cols) > 0:
            for col in confidence_cols:
                dataset_onesite.loc[i, col] = ';'.join(subdataset[col].values.astype('str'))
    return dataset_onesite


def load_structure(fpath, chain=None):
    """
    Args:
        fpath: filepath to either pdb or cif file
        chain: the chain id or list of chain ids to load
    Returns:
        biotite.structure.AtomArray
    """
    if fpath.endswith('cif'):
        with open(fpath) as fin:
            pdbxf = pdbx.PDBxFile.read(fin)
        structure = pdbx.get_structure(pdbxf, model=1)
    elif fpath.endswith('cif.gz'):
        with gzip.open(fpath, 'rt') as fin:
            pdbxf = pdbx.PDBxFile.read(fin)
        structure = pdbx.get_structure(pdbxf, model=1)
    elif fpath.endswith('pdb'):
        with open(fpath) as fin:
            pdbf = pdb.PDBFile.read(fin)
        structure = pdb.get_structure(pdbf, model=1)
    elif fpath.endswith('pdb.gz'):
        with gzip.open(fpath, 'rt') as fin:
            pdbf = pdb.PDBFile.read(fin)
        structure = pdb.get_structure(pdbf, model=1)
    else:
        raise ValueError("Invalid file extension")
    # bbmask = filter_backbone(structure)
    # structure = structure[bbmask]
    all_chains = get_chains(structure)
    if len(all_chains) == 0:
        raise ValueError('No chains found in the input file.')
    if chain is None:
        chain_ids = all_chains
    elif isinstance(chain, list):
        chain_ids = chain
    else:
        chain_ids = [chain]
    for chain in chain_ids:
        if chain not in all_chains:
            raise ValueError(f'Chain {chain} not found in input file')
    chain_filter = [a.chain_id in chain_ids for a in structure]
    structure = structure[chain_filter]
    return structure


def extract_coords_from_structure(structure: biotite.structure.AtomArray):
    """
    Args:
        structure: An instance of biotite AtomArray
    Returns:
        Tuple coords
            - coords is an L x 5 x 3 array for N, C, O, CA, CB coordinates
    """
    coords = get_atom_coords_residue_wise(["N", "C", "O", "CA", "CB"], structure)
    return coords


def extract_sidechain_from_structure(structure: biotite.structure.AtomArray):
    """
    Args:
        structure: An instance of biotite AtomArray
    Returns:
        Tuple coords
            - coords is an L x 31 x 3 array for side chain coordinates
    """
    coords = get_atom_coords_residue_wise(['CD', 'CD1', 'CD2', 'CE', 'CE1',
                                           'CE2', 'CE3', 'CG', 'CG1', 'CG2', 
                                           'CH2', 'CZ', 'CZ2', 'CZ3', 'ND1',
                                           'ND2', 'NE', 'NE1', 'NE2', 'NH1',
                                           'NH2', 'NZ', 'OD1', 'OD2', 'OE1',
                                           'OE2', 'OG', 'OG1', 'OH', 'SD', 
                                           'SG'],
                                           structure)
    return coords


def extract_residues_from_structure(structure: biotite.structure.AtomArray):
    """
    Args:
        structure: An instance of biotite AtomArray
    Returns:
        Tuple (coords, seq)
            - coords is an L x 3 x 3 array for N, CA, C coordinates
            - seq is the extracted sequence
    """
    residue_identities = get_residues(structure)[1]
    seq = ''.join([ProteinSequence.convert_letter_3to1(r) for r in residue_identities])
    return seq


def get_atom_coords_residue_wise(atoms: List[str], struct: biotite.structure.AtomArray):
    """
    Example for atoms argument: ["N", "O", "CA", "C", "CB"]
    """

    def filterfn(s, axis=None):
        filters = np.stack([s.atom_name == name for name in atoms], axis=1)
        filter_sum = filters.sum(0)
        if not np.all(filter_sum <= np.ones(filters.shape[1])):
            raise RuntimeError("structure has multiple atoms with same name")
        index = filters.argmax(0)
        coords = s[index].coord
        coords[filter_sum == 0] = float("nan")
        return coords

    return biotite.structure.apply_residue_wise(struct, struct, filterfn)


def get_mutations(uniprot_id, transcript_id, seq, seq_orig_len,
                  pos_orig, ref_aa, alt_aa, max_len=1400, af2_file=None):
    mutation = Mutation(uniprot_id, transcript_id, seq, seq_orig_len, pos_orig, ref_aa, alt_aa, max_len, af2_file)
    if mutation.af2_file is None:
        print(
            f"No AF2 file found for this mutation "+
            f"{mutation.uniprot_id}:{mutation.ref_aa}:{mutation.pos}:{mutation.alt_aa}. Skipping..."
            )
        return False
    else:
        return mutation


def get_random_point_mutations(uniprot_id, transcript_id, seq, seq_orig_len,
                               pos_orig, ref_aa, alt_aa, score):
    if score == -1:
        point_mutation = RandomPointMutation(uniprot_id, transcript_id, seq, seq_orig_len)
    else:
        point_mutation = Mutation(uniprot_id, transcript_id, seq, seq_orig_len, pos_orig, ref_aa, alt_aa)
    if point_mutation.af2_file is None:
        return False
    else:
        return point_mutation


def get_mask_predict_point_mutations(uniprot_id, transcript_id, seq, seq_orig_len,
                                     pos_orig, ref_aa, alt_aa, max_len=2251, af2_file=None):
    point_mutation = MaskPredictPointMutation(uniprot_id, transcript_id, seq, seq_orig_len, pos_orig, ref_aa, alt_aa, max_len, af2_file)
    # print("finished loading point mutation")
    if point_mutation.af2_file is None:
        print(
            f"No AF2 file found for this mutation "+
            f"{point_mutation.uniprot_id}:{point_mutation.ref_aa}:{point_mutation.pos}:{point_mutation.alt_aa}. Skipping..."
            )
        return False
    else:
        return point_mutation


def get_coords_from_af2(af2_file, add_sidechain=False):
    pdb_path = af2_file
    structure = load_structure(pdb_path)
    af2_coords = extract_coords_from_structure(structure)
    if add_sidechain:
        af2_coords_sidechain = extract_sidechain_from_structure(structure)
        af2_coords = np.concatenate([af2_coords, af2_coords_sidechain], axis=1)
    return af2_coords


def get_plddt_from_af2(af2_file):
    pdb_file = PandasPdb().read_pdb(af2_file)
    pdb_file = pdb_file.df['ATOM'].drop_duplicates(subset=['residue_number'])
    plddt = pdb_file['b_factor'].values
    return plddt


def get_dssp_from_af2(af2_file):
    p = PDBParser()
    with gzip.open(af2_file, 'rt') as f:
        structure = p.get_structure('', f)
    model = structure[0]
    # try:
    #     dssp = DSSP(model, af2_file, file_type="PDB", dssp="/usr/bin/dssp")
    # except Exception or UserWarning:
    random.seed(hash(af2_file))
    tmpfile = '/share/descartes/Users/gz2294/tmp/'+ ''.join(random.choices(string.ascii_letters, k=5)) + '.pdb'
    with open(tmpfile, 'w') as f:
        f.write(gzip.open(af2_file, 'rt').read())
    dssp = DSSP(model, tmpfile, file_type="PDB", dssp="/share/descartes/Users/gz2294/miniconda3/bin/mkdssp")
    os.remove(tmpfile)
    # keys in dssp: index, aa, secondary struc, rsa, phi, psi, N-H-->O, O-->H-N, N-H-->O, O-->H-N
    dssp = pd.DataFrame(dssp)
    sec_struc = np.eye(len(DSSP_DICT), dtype=np.float32)[[DSSP_DICT.index(i) for i in dssp.iloc[:, 2].values]]
    return np.concatenate([sec_struc, 
                           dssp.iloc[:, 3].values[:, None], 
                           dssp.iloc[:, 4].values[:, None] / 180 * np.pi, 
                           dssp.iloc[:, 5].values[:, None] / 180 * np.pi], axis=1)


def get_ptm_from_mutation(mutation: Mutation, ptm_ref):
    # for each af2 file, match the PTM anno to it
    # get uniprotID
    uniprotID = mutation.uniprot_id
    ptm_ref = ptm_ref[ptm_ref['uniprotID'] == uniprotID]
    seq = mutation.seq
    # get fragment start and end
    ptm_ref['pos'] = ptm_ref['pos'] - mutation.seq_start_orig - mutation.seq_start + 1
    ptm_ref = ptm_ref[ptm_ref['pos'] >= 0]
    ptm_ref = ptm_ref[ptm_ref['pos'] < mutation.seq_len]
    ptm_mat = np.zeros([mutation.seq_len, len(PTM_DICT)])
    for i in ptm_ref.index:
        if ptm_ref['ref'].loc[i] == seq[ptm_ref['pos'].loc[i]]:
            ptm_mat[ptm_ref['pos'].loc[i], PTM_DICT[ptm_ref['type'].loc[i]]] = 1
    return ptm_mat


def get_knn_graphs_from_af2(af2_coords, radius=None, max_neighbors=None, loop=False, gpu_id=None):
    CA_coord = af2_coords[:, 3]
    if radius is None:
        edge_index = np.indices((af2_coords.shape[0], af2_coords.shape[0])).reshape(2, -1)
        # cancel self-edges
        if not loop:
            edge_index = edge_index[:, edge_index[0] != edge_index[1]]
    else:
        if max_neighbors is None:
            max_neighbors = af2_coords.shape[0] + 1
        with torch.no_grad():
            CA_coord = torch.from_numpy(CA_coord)
            edge_index = knn_graph(
                x=CA_coord.to(f'cuda:{gpu_id}') if gpu_id is not None and torch.cuda.is_available() else CA_coord,
                # r=radius,
                loop=loop,
                # max_num_neighbors=max_neighbors,
                k=max_neighbors,
                num_workers=NUM_THREADS,
            ).detach().cpu().numpy()
            del CA_coord
    return edge_index


def get_radius_graphs_from_af2(af2_coords, radius, loop=False, gpu_id=None):
    CA_coord = af2_coords[:, 3]
    max_neighbors = af2_coords.shape[0] + 1
    with torch.no_grad():
        CA_coord = torch.from_numpy(CA_coord)
        edge_index = radius_graph(
            x=CA_coord.to(f'cuda:{gpu_id}') if gpu_id is not None and torch.cuda.is_available() else CA_coord,
            r=radius,
            loop=loop,
            max_num_neighbors=max_neighbors,
            num_workers=NUM_THREADS,
        ).detach().cpu().numpy()
        del CA_coord
    return edge_index


def get_radius_knn_graphs_from_af2(af2_coords, center_nodes, radius, max_neighbors, loop=False, gpu_id=None):
    # first get radius graph at the center nodes, then get knn graph for other nodes
    CA_coord = af2_coords[:, 3]
    with torch.no_grad():
        CA_coord = torch.from_numpy(CA_coord)
        edge_index = radius_graph(
            x=CA_coord.to(f'cuda:{gpu_id}') if gpu_id is not None and torch.cuda.is_available() else CA_coord,
            r=radius,
            loop=loop,
            max_num_neighbors=af2_coords.shape[0] + 1,
            num_workers=NUM_THREADS,
        ).detach().cpu().numpy()
        # filter edge_index so that only center nodes are kept
        edge_index_radius = edge_index[:, np.isin(edge_index[0], center_nodes)]
        # next get knn graph for other nodes
        edge_index = knn_graph(
                x=CA_coord.to(f'cuda:{gpu_id}') if gpu_id is not None and torch.cuda.is_available() else CA_coord,
                loop=loop,
                k=max_neighbors,
                num_workers=NUM_THREADS,
            ).detach().cpu().numpy()
        del CA_coord
        # only keep nodes that are in the radius graph
        edge_index = edge_index[:, np.isin(edge_index[0], edge_index_radius.flatten()) & np.isin(edge_index[1], edge_index_radius.flatten())]
    return edge_index


def get_graphs_from_neighbor(af2_coords, max_neighbors=None, loop=False):
    nodes = af2_coords.shape[0]
    if max_neighbors is None:
        # full graph
        max_neighbors = nodes + 1
    edge_graph = np.ones((nodes, nodes))
    # fill upper triangle with 0
    edge_graph *= np.tri(nodes, k=int(np.floor(max_neighbors / 2))) \
                  * np.tri(nodes, k=int(np.floor(max_neighbors / 2))).T
    edge_index = np.array(np.where(edge_graph == 1))
    if not loop:
        edge_index = edge_index[:, edge_index[0] != edge_index[1]]
    return edge_index


def get_embedding_from_esm2(protein, check_mode=True, seq_start=None, seq_end=None):
    if isinstance(protein, str):
        file_path = f"{ESM_DATA_PATH}/{protein}.representations.layer.48.npy"
        if os.path.exists(file_path):
            if check_mode:
                return True
            wt_orig = np.load(file_path)
            # TODO: I am removing the <BOS> and <EOS> tokens, not sure if this is correct
            batch_tokens = wt_orig[max(0, seq_start):
                                   min(wt_orig.shape[0] - 1, seq_end + 1)]
        else:
            if check_mode:
                return False
            batch_tokens = np.zeros([seq_end - seq_start + 1, 5120 if ESM_MODEL_SIZE == "15B" else 1280])
    elif isinstance(protein, np.ndarray):
        batch_tokens = protein[max(0, seq_start):
                               min(protein.shape[0] - 1, seq_end + 1)]
    else:
        raise ValueError("protein must be either a string of uniprotID or a numpy array")
    return batch_tokens


def get_esm_dict_from_uniprot(uniprotID):
    file_path = f"{ESM_DATA_PATH}/{uniprotID}.representations.layer.48.npy"
    wt_orig = np.load(file_path)
    return wt_orig


def get_af2_single_rep_dict_from_prefix(uniprotID_prefix, filter=False):
    # sometimes colabfold will padding the results, we need to remove the padding
    file_path = f"{uniprotID_prefix}_single_repr_rank_001_alphafold2_ptm_model_1_seed_000.npy"
    wt_orig = np.load(file_path)
    # padding_length = 0
    # last_i = 1
    # while np.all(wt_orig[-last_i-1] == wt_orig[-last_i]):
    #     # remove the last line if it is the same as the second last line
    #     last_i -= 1
    #     padding_length += 1
    # if padding_length > 0:
    #     wt_orig = wt_orig[:-(padding_length+1)]
    return wt_orig


def get_af2_pairwise_rep_dict_from_prefix(uniprotID_prefix):
    file_path = f"{uniprotID_prefix}_pair_repr_rank_001_alphafold2_ptm_model_1_seed_000.npy"
    wt_orig = np.load(file_path)
    # padding_length = 0
    # last_i = 1
    # while np.all(wt_orig[-last_i-1] == wt_orig[-last_i]):
    #     # remove the last line if it is the same as the second last line
    #     last_i -= 1
    #     padding_length += 1
    return wt_orig


def get_embedding_from_esm1b(protein, check_mode=True, seq_start=None, seq_end=None):
    if isinstance(protein, str):
        file_path = f"/share/vault/Users/gz2294/Data/DMS/ClinVar.HGMD.PrimateAI.syn/esm1b.embedding.uniprotIDs/{protein}.representations.layer.48.npy"
        if os.path.exists(file_path):
            if check_mode:
                return True
            wt_orig = np.load(file_path)
            # TODO: I am removing the <BOS> and <EOS> tokens, not sure if this is correct
            batch_tokens = wt_orig[max(0, seq_start):
                                   min(wt_orig.shape[0] - 1, seq_end + 1)]
        else:
            if check_mode:
                return False
            batch_tokens = np.zeros([seq_end - seq_start + 1, 5120 if ESM_MODEL_SIZE == "15B" else 1280])
    elif isinstance(protein, np.ndarray):
        batch_tokens = protein[max(0, seq_start):
                               min(protein.shape[0] - 1, seq_end + 1)]
    else:
        raise ValueError("protein must be either a string of uniprotID or a numpy array")
    return batch_tokens


def get_embedding_from_onehot(seq, seq_start=None, seq_end=None, return_idx=False, aa_dict=None, return_onehot_mat=False):
    if aa_dict is None:
        idx = [AA_DICT.index(aa) for aa in seq]
        protein = np.eye(len(AA_DICT))[idx]
        one_hot_mat = np.eye(len(AA_DICT))
    else:
        idx = [aa_dict.index(aa) for aa in seq]
        protein = np.eye(len(aa_dict))[idx]
        one_hot_mat = np.eye(len(aa_dict))
    if seq_start is not None and seq_end is not None:
        batch_tokens = protein[max(0, seq_start - 1): min(protein.shape[0], seq_end)]
    else:
        batch_tokens = protein
    if return_idx:
        if return_onehot_mat:
            return batch_tokens, np.array(idx), one_hot_mat
        else:
            return batch_tokens, np.array(idx)
    else:
        if return_onehot_mat:
            return batch_tokens, one_hot_mat
        else:
            return batch_tokens


def get_embedding_from_esm_onehot(seq, seq_start=None, seq_end=None, return_idx=False, aa_dict=None, return_onehot_mat=False):
    if aa_dict is None:
        idx = [ESM_TOKENS.index('<cls>')] + [ESM_TOKENS.index(aa) for aa in seq] + [ESM_TOKENS.index('<eos>')]
        # directly return idxs but not one-hot matrix
        protein = np.array(idx)
    else:
        idx = [aa_dict.index(aa) for aa in seq]
        protein = np.array(idx)
    if seq_start is not None and seq_end is not None:
        batch_tokens = protein[max(0, seq_start - 1): min(protein.shape[0], seq_end)]
    else:
        batch_tokens = protein
    if return_idx:
        if return_onehot_mat:
            return batch_tokens, np.array(idx), None
        else:
            return batch_tokens, np.array(idx)
    else:
        if return_onehot_mat:
            return batch_tokens, None
        else:
            return batch_tokens


def get_embedding_from_5dim(seq, seq_start=None, seq_end=None):
    protein = np.array([AA_5DIM_EMBED[aa] for aa in seq])
    if seq_start is not None and seq_end is not None:
        batch_tokens = protein[max(0, seq_start - 1): min(protein.shape[0], seq_end)]
    else:
        batch_tokens = protein
    return batch_tokens


def get_embedding_from_onehot_nonzero(seq, seq_start=None, seq_end=None, return_idx=False, 
                                      aa_dict=None, min_prob=0.001, return_onehot_mat=False):
    if aa_dict is None:
        aa_dict = AA_DICT
    one_hot_mat = np.eye(len(aa_dict))
    n_special_tok = 0
    for special_tok in ['<mask>', '<pad>']:
        if special_tok in aa_dict:
            one_hot_mat[aa_dict.index(special_tok), :] = -1
            one_hot_mat[:, aa_dict.index(special_tok)] = -1
            one_hot_mat[aa_dict.index(special_tok), aa_dict.index(special_tok)] = 2
            n_special_tok += 1
    one_hot_mat[one_hot_mat == 0] = min_prob
    one_hot_mat[one_hot_mat == 1] = 1 - min_prob * (len(aa_dict) - n_special_tok)
    one_hot_mat[one_hot_mat == -1] = 0
    one_hot_mat[one_hot_mat == 2] = 1
    idx = [aa_dict.index(aa) for aa in seq]
    protein = one_hot_mat[idx]
    if seq_start is not None and seq_end is not None:
        batch_tokens = protein[max(0, seq_start - 1): min(protein.shape[0], seq_end)]
    else:
        batch_tokens = protein
    if return_idx:
        if return_onehot_mat:
            return batch_tokens, np.array(idx), one_hot_mat
        else:
            return batch_tokens, np.array(idx)
    else:
        if return_onehot_mat:
            return batch_tokens, one_hot_mat
        else:
            return batch_tokens

# TODO: conservation should only from 1:21, not 1:41
def get_conservation_from_msa(mutation: Mutation, check_mode=False):
    transcript = mutation.transcript_id
    seq = mutation.seq
    seq_start = mutation.seq_start_orig
    seq_end = mutation.seq_end_orig
    if seq_start is None:
        seq_start = 1
    if seq_end is None:
        seq_end = len(seq)
    msa_alphabet = np.array(list('ACDEFGHIKLMNPQRSTVWYU'))
    if not os.path.exists(f'{MSA_DATA_PATH}/{transcript}.pickle'):
        matched_line = False
    else:
        with open(os.path.join(MSA_DATA_PATH, transcript + '.pickle'), 'rb') as file:
            msa_mat = pickle.load(file)
        msa_seq = ''.join(msa_alphabet[msa_mat[seq_start - 1:seq_end, 0].astype(int)])
        if mutation.crop:
            msa_seq = msa_seq[mutation.seq_start -1:mutation.seq_end]
        matched_line = msa_seq == seq
    if matched_line:
        if check_mode:
            return True
        # 1:20 is conservation from hhblits, 21:41 is conservation from compara
        conservation = msa_mat[seq_start - 1:seq_end, 1:41]
    else:
        if check_mode:
            return False
        conservation = np.zeros([seq_end - seq_start + 1, 40])
    if mutation.crop:
        conservation = conservation[mutation.seq_start -1:mutation.seq_end]
    return conservation


def get_msa_dict_from_transcript_archive(transcript):
    msa_alphabet = np.array(list('ACDEFGHIKLMNPQRSTVWYU'))
    if pd.isna(transcript) or not os.path.exists(f'{MSA_DATA_PATH}/{transcript}.pickle'):
        msa_seq = ''
        conservation = np.zeros([0, 20])
        msa = np.zeros([0, 200])
    else:
        with open(os.path.join(MSA_DATA_PATH, transcript + '.pickle'), 'rb') as file:
            msa_mat = pickle.load(file)
        msa_seq = ''.join(msa_alphabet[msa_mat[:, 0].astype(int)])
        conservation = msa_mat[:, 1:21]
        msa = msa_mat[:, 21:221]
    return msa_seq, conservation, msa


def get_msa_dict_from_transcript(uniprotID):
    msa_alphabet = np.array(list('ACDEFGHIKLMNPQRSTVWYU'))
    if pd.isna(uniprotID) or not os.path.exists(f'{MSA_DATA_PATH}/{uniprotID}_MSA.npy'):
        msa_seq = ''
        conservation = np.zeros([0, 20])
        msa = np.zeros([0, 199])
    else:
        msa_mat = np.load(f'{MSA_DATA_PATH}/{uniprotID}_MSA.npy')
        msa_seq = ''.join(msa_alphabet[msa_mat[:, 0].astype(int)])
        conservation = np.eye(21)[msa_mat.astype(int)].mean(axis=1)[:, :20]
        msa = msa_mat
    return msa_seq, conservation, msa


def get_confidence_from_af2file(af2file, pLDDT):
    uniprotID = af2file.split('/')[-1].split('.')[0].split('-model')[0]
    if pd.isna(uniprotID) or not os.path.exists(f'{PAE_DATA_PATH}/{uniprotID[3:6]}/{uniprotID}-predicted_aligned_error_v4.json.gz'):
        # if PAE does not exist, use pLDDT
        # pae = (pLDDT[None, :] + pLDDT[:, None]) / 200 if not pLDDT is None else None
        pae = (200 - pLDDT[None, :] - pLDDT[:, None]) / 4 if not pLDDT is None else None
    else:
        with gzip.open(f'{PAE_DATA_PATH}/{uniprotID[3:6]}/{uniprotID}-predicted_aligned_error_v4.json.gz', 'rt') as f:
            pae = json.load(f)
        # pae = np.exp(-0.08*np.array(pae[0]['predicted_aligned_error']))
        pae = np.array(pae[0]['predicted_aligned_error'])
    return pae


def get_msa(mutation: Mutation, check_mode=False):
    transcript = mutation.transcript_id
    seq = mutation.seq
    seq_start = mutation.seq_start_orig
    seq_end = mutation.seq_end_orig
    if seq_start is None:
        seq_start = 1
    if seq_end is None:
        seq_end = len(seq)
    msa_alphabet = np.array(list('ACDEFGHIKLMNPQRSTVWYU'))
    if not os.path.exists(f'{MSA_DATA_PATH}/{transcript}.pickle'):
        matched_line = False
    else:
        with open(os.path.join(MSA_DATA_PATH, transcript + '.pickle'), 'rb') as file:
            msa_mat = pickle.load(file)
        msa_seq = ''.join(msa_alphabet[msa_mat[seq_start - 1:seq_end, 0].astype(int)])
        if mutation.crop:
            msa_seq = msa_seq[mutation.seq_start -1:mutation.seq_end]
        matched_line = msa_seq == seq
    if matched_line:
        if check_mode:
            return True
        # 1:20 is conservation from hhblits, 1:21 is conservation from compara
        msa = msa_mat[seq_start - 1:seq_end, 21:221]
    else:
        if check_mode:
            return False
        msa = np.zeros([seq_end - seq_start + 1, 200])
    if mutation.crop:
        msa = msa[mutation.seq_start -1:mutation.seq_end]
    return msa


def get_logits_from_esm2(protein, check_mode=True, seq_start=None, seq_end=None):
    if isinstance(protein, str):
        file_path = f"{ESM_DATA_PATH}/{protein}.logits.npy"
        if os.path.exists(file_path):
            if check_mode:
                return True
            wt_orig = np.load(file_path)
            # TODO: I am removing the <BOS> and <EOS> tokens, not sure if this is correct
            batch_tokens = wt_orig[max(0, seq_start):
                                   min(wt_orig.shape[0] - 1, seq_end + 1)]
        else:
            if check_mode:
                return False
            batch_tokens = np.zeros([seq_end - seq_start + 1, 32])
    elif isinstance(protein, np.ndarray):
        batch_tokens = protein[max(0, seq_start):
                               min(protein.shape[0] - 1, seq_end + 1)]
    else:
        raise ValueError("protein must be either a string of uniprotID or a numpy array")
    return batch_tokens


def get_attn_from_msa(transcript, seq, check_mode=False, seq_start=None, seq_end=None):
    NUM_LAYERS = 6
    msa_alphabet = np.array(list('ACDEFGHIKLMNPQRSTVWYU'))
    if isinstance(transcript, str):
        if pd.isna(transcript) \
                or not os.path.exists(f'{MSA_DATA_PATH}/{transcript}.pickle') \
                or not os.path.exists(f'{MSA_ATTN_DATA_PATH}/{transcript}.row_attentions.pt'):
            matched_line = False
        else:
            with open(os.path.join(MSA_DATA_PATH, transcript + '.pickle'), 'rb') as file:
                msa_mat = pickle.load(file)
            if seq_start is None:
                seq_start = 1
            if seq_end is None:
                seq_end = len(seq)
            msa_seq = ''.join(msa_alphabet[msa_mat[seq_start - 1:seq_end, 0].astype(int)])
            matched_line = msa_seq == seq
        if matched_line:
            if check_mode:
                return True
            msa_row_attns = torch.load(
                os.path.join(MSA_ATTN_DATA_PATH, transcript + '.row_attentions.pt')).detach().numpy()
            msa_contacts = torch.load(os.path.join(MSA_ATTN_DATA_PATH, transcript + '.contacts.pt')).detach().numpy()
            # R file parse seq_start starting from 1, so we need to minus 1
            # only use last 6 attn layers
            msa_row_attns = msa_row_attns[:, (12 - NUM_LAYERS):, :, seq_start - 1:seq_end, seq_start - 1:seq_end]
            msa_contacts = msa_contacts[:, seq_start - 1:seq_end, seq_start - 1:seq_end]
            msa_pairwise = np.concatenate([msa_row_attns.reshape(-1, msa_row_attns.shape[-2], msa_row_attns.shape[-1]),
                                           msa_contacts], axis=0).transpose((1, 2, 0))
        else:
            if check_mode:
                return False
            msa_pairwise = np.zeros([seq_end - seq_start + 1, seq_end - seq_start + 1, NUM_LAYERS * 12 + 1])
    elif isinstance(transcript, tuple):
        msa_row_attns = transcript[0]
        msa_contacts = transcript[1]
        if msa_row_attns is not None and msa_contacts is not None:
            msa_row_attns = msa_row_attns[:, (12 - NUM_LAYERS):, :, seq_start - 1:seq_end, seq_start - 1:seq_end]
            msa_contacts = msa_contacts[:, seq_start - 1:seq_end, seq_start - 1:seq_end]
            msa_pairwise = np.concatenate([msa_row_attns.reshape(-1, msa_row_attns.shape[-2], msa_row_attns.shape[-1]),
                                           msa_contacts], axis=0).transpose((1, 2, 0))
        else:
            msa_pairwise = np.zeros([seq_end - seq_start + 1, seq_end - seq_start + 1, NUM_LAYERS * 12 + 1])
    else:
        raise ValueError("transcript must be either a string of transcriptID"
                         " or a tuple of msa_row_attns and msa_contacts")
    return msa_pairwise


def get_contacts_from_msa(mutation: Mutation, check_mode=False):
    transcript = mutation.transcript_id
    seq = mutation.seq
    seq_start = mutation.seq_start
    seq_end = mutation.seq_end
    msa_alphabet = np.array(list('ACDEFGHIKLMNPQRSTVWYU'))
    if pd.isna(transcript) \
            or not os.path.exists(f'{MSA_DATA_PATH_ARCHIVE}/{transcript}.pickle') \
            or not os.path.exists(f'{MSA_ATTN_DATA_PATH}/{transcript}.contacts.pt'):
        matched_line = False
    else:
        with open(os.path.join(MSA_DATA_PATH_ARCHIVE, transcript + '.pickle'), 'rb') as file:
            msa_mat = pickle.load(file)
        if seq_start is None:
            seq_start = 1
        if seq_end is None:
            seq_end = len(seq)
        msa_seq = ''.join(msa_alphabet[msa_mat[seq_start - 1:seq_end, 0].astype(int)])
        matched_line = msa_seq == seq
    if matched_line:
        if check_mode:
            return True
        msa_contacts = torch.load(os.path.join(MSA_ATTN_DATA_PATH, transcript + '.contacts.pt')).detach().numpy()
        # R file parse seq_start starting from 1, so we need to minus 1
        msa_contacts = msa_contacts[:, seq_start - 1:seq_end, seq_start - 1:seq_end]
        msa_pairwise = msa_contacts.transpose((1, 2, 0))
    else:
        # no esm_msa file, try esm2 predicted contacts instead
        if not os.path.exists(f'{ESM_DATA_PATH}/{mutation.ESM_prefix}.contacts.npy'):
            if check_mode:
                return False
            msa_pairwise = np.zeros([seq_end - seq_start + 1, seq_end - seq_start + 1, 1])
        else:
            if check_mode:
                return True
            msa_pairwise = np.load(f'{ESM_DATA_PATH}/{mutation.ESM_prefix}.contacts.npy')
            msa_pairwise = np.expand_dims(msa_pairwise[seq_start - 1:seq_end, seq_start - 1:seq_end], axis=2)
    return msa_pairwise

# unused
def get_contacts_from_msa_by_identifier(identifier):
    str_split = identifier.split(":")
    transcript = str_split[0]
    seq = str_split[1]
    seq_start = int(str_split[2])
    seq_end = int(str_split[3])
    check_mode = False
    return get_contacts_from_msa(transcript, seq, check_mode, seq_start, seq_end)

# unused
def load_embedding_from_esm2(protein):
    file_path = f"{ESM_DATA_PATH}/{protein}.representations.layer.48.npy"
    assert os.path.exists(file_path)
    return np.load(file_path)

# unused
def load_logits_from_esm2(protein):
    file_path = f"{ESM_DATA_PATH}/{protein}.logits.npy"
    assert os.path.exists(file_path)
    return np.load(file_path)

# unused
def load_attn_from_msa(transcript):
    if os.path.exists(os.path.join(MSA_ATTN_DATA_PATH, transcript + '.row_attentions.pt')) and \
            os.path.exists(os.path.join(MSA_ATTN_DATA_PATH, transcript + '.contacts.pt')):
        msa_row_attns = torch.load(os.path.join(MSA_ATTN_DATA_PATH, transcript + '.row_attentions.pt')).detach().numpy()
        msa_contacts = torch.load(os.path.join(MSA_ATTN_DATA_PATH, transcript + '.contacts.pt')).detach().numpy()
        return msa_row_attns, msa_contacts
    else:
        return None, None


def _test_load():
    test_file = pd.read_csv('/share/terra/Users/gz2294/ld1/Data/DMS/ClinVar.HGMD.PrimateAI.syn/training.csv',
                            index_col=0)
    # idx = np.where(test_file.uniprotID == 'Q8WZ42')[0][0]
    idx = np.where(test_file['sequence.len.orig'] == 4753)[0][0]
    point_mutation = get_mutations(test_file['uniprotID'].iloc[idx],
                                    test_file['ENST'].iloc[idx],
                                    test_file['wt.orig'].iloc[idx],
                                    test_file['sequence.len.orig'].iloc[idx],
                                    test_file['pos.orig'].iloc[idx],
                                    test_file['ref'].iloc[idx],
                                    test_file['alt'].iloc[idx])
    coords = get_coords_from_af2(point_mutation.af2_file)

    CA_coord = coords[:, 3]
    embed_data = get_embedding_from_esm2(point_mutation.uniprot_id, False,
                                         point_mutation.seq_start, point_mutation.seq_end)
    # prepare edge features
    coev_strength = get_attn_from_msa(point_mutation.transcript_id, point_mutation.seq, False,
                                      point_mutation.seq_start, point_mutation.seq_end)
    edge_index = np.indices((coords.shape[0], coords.shape[0])).reshape(2, -1)
    # cancel self-edges
    edge_index = edge_index[:, edge_index[0] != edge_index[1]]
    edge_attr = coev_strength[edge_index[0], edge_index[1], :]
    # prepare node vector features
    CA_CB = coords[:, [4]] - coords[:, [3]]
    CA_C = coords[:, [1]] - coords[:, [3]]
    CA_O = coords[:, [2]] - coords[:, [3]]
    CA_N = coords[:, [0]] - coords[:, [3]]
    nodes_vector = np.concatenate([CA_CB, CA_C, CA_O, CA_N], axis=1)
    # prepare graph
    features = dict(
        pos=torch.from_numpy(CA_coord), x=torch.from_numpy(embed_data),
        edge_index=torch.from_numpy(edge_index), edge_attr=torch.from_numpy(edge_attr).to(torch.float),
        node_vec_attr=torch.from_numpy(nodes_vector).transpose(1, 2)
    )
    from torch_geometric.data import Data

    map_data = Data(**features)
    return map_data


if __name__ == '__main__':
    print(_test_load())