File size: 2,824 Bytes
be53f27 0c4f9ce be53f27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: apache-2.0
tags:
- generated_from_trainer
base_model: facebook/wav2vec2-large-xlsr-53
metrics:
- wer
model-index:
- name: wav2vec2-large-xlsr-53-breton
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-53-breton
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9840
- Wer: 0.5852
- Cer: 0.2130
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.08
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 11.8947 | 2.56 | 250 | 3.4769 | 1.0 | 0.9862 |
| 3.1668 | 5.13 | 500 | 3.0459 | 1.0 | 0.9862 |
| 2.6491 | 7.69 | 750 | 1.6416 | 0.9319 | 0.4441 |
| 1.4107 | 10.26 | 1000 | 1.1000 | 0.7751 | 0.2852 |
| 0.9989 | 12.82 | 1250 | 0.9827 | 0.7092 | 0.2578 |
| 0.8238 | 15.38 | 1500 | 0.9543 | 0.6864 | 0.2476 |
| 0.7193 | 17.95 | 1750 | 0.9241 | 0.6547 | 0.2371 |
| 0.6377 | 20.51 | 2000 | 0.9296 | 0.6452 | 0.2352 |
| 0.5865 | 23.08 | 2250 | 0.9287 | 0.6320 | 0.2301 |
| 0.541 | 25.64 | 2500 | 0.9359 | 0.6205 | 0.2231 |
| 0.4988 | 28.21 | 2750 | 0.9850 | 0.6149 | 0.2244 |
| 0.4691 | 30.77 | 3000 | 0.9566 | 0.6065 | 0.2192 |
| 0.4568 | 33.33 | 3250 | 0.9653 | 0.6019 | 0.2175 |
| 0.4485 | 35.9 | 3500 | 0.9760 | 0.5949 | 0.2175 |
| 0.4219 | 38.46 | 3750 | 0.9824 | 0.5926 | 0.2177 |
| 0.397 | 41.03 | 4000 | 0.9669 | 0.5885 | 0.2138 |
| 0.3912 | 43.59 | 4250 | 0.9857 | 0.5908 | 0.2145 |
| 0.3764 | 46.15 | 4500 | 0.9937 | 0.5886 | 0.2145 |
| 0.3742 | 48.72 | 4750 | 0.9840 | 0.5852 | 0.2130 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
|