File size: 1,755 Bytes
2d7fb58 ea478fc 2d7fb58 eb28cbe 2d7fb58 eb28cbe 2d7fb58 2db17b6 2d7fb58 77213bb 2d7fb58 2db17b6 2d7fb58 ea478fc 2d7fb58 77213bb 2d7fb58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
metrics:
- precision: 0.9360
- recall: 0.9458
- f1: 0.9409
- accuracy: 0.9902
model-index:
- name: gunghio/distilbert-base-multilingual-cased-finetuned-conll2003-ner
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gunghio/distilbert-base-multilingual-cased-finetuned-conll2003-ner
This model was trained from scratch on an conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0388
- Precision: 0.9360
- Recall: 0.9458
- F1: 0.9409
- Accuracy: 0.9902
## Model description
It is based on distilbert-base-multilingual-cased
## Intended uses & limitations
More information needed
## Training and evaluation data
Training dataset: [conll2003](https://huggingface.co/datasets/conll2003)
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1653 | 1.0 | 878 | 0.0465 | 0.9267 | 0.9300 | 0.9283 | 0.9883 |
| 0.0322 | 2.0 | 1756 | 0.0404 | 0.9360 | 0.9431 | 0.9396 | 0.9897 |
| 0.0185 | 3.0 | 2634 | 0.0388 | 0.9360 | 0.9458 | 0.9409 | 0.9902 |
### Framework versions
- Transformers 4.6.1
- Pytorch 1.8.1+cu101
- Datasets 1.6.2
- Tokenizers 0.10.2
|