File size: 1,908 Bytes
5f5124a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: mit
base_model: numind/NuNER-v2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: nuner-v2_fewnerd_fine_super
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nuner-v2_fewnerd_fine_super
This model is a fine-tuned version of [numind/NuNER-v2.0](https://huggingface.co/numind/NuNER-v2.0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2392
- Precision: 0.6818
- Recall: 0.7148
- F1: 0.6979
- Accuracy: 0.9309
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2608 | 1.0 | 2059 | 0.2497 | 0.6512 | 0.7000 | 0.6747 | 0.9255 |
| 0.2153 | 2.0 | 4118 | 0.2364 | 0.6796 | 0.7015 | 0.6904 | 0.9302 |
| 0.1949 | 3.0 | 6177 | 0.2347 | 0.6785 | 0.7110 | 0.6944 | 0.9309 |
| 0.1669 | 4.0 | 8236 | 0.2392 | 0.6818 | 0.7148 | 0.6979 | 0.9309 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|