File size: 2,009 Bytes
31d7359
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---

license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: speecht5_finetuned_antonio
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# speecht5_finetuned_antonio

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2766

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05

- train_batch_size: 4

- eval_batch_size: 2

- seed: 42

- gradient_accumulation_steps: 8

- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500

- training_steps: 10000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step  | Validation Loss |
|:-------------:|:-------:|:-----:|:---------------:|
| 0.3944        | 8.9787  | 1000  | 0.3490          |
| 0.354         | 17.9574 | 2000  | 0.3180          |
| 0.3328        | 26.9360 | 3000  | 0.3005          |
| 0.3204        | 35.9147 | 4000  | 0.2934          |
| 0.3077        | 44.8934 | 5000  | 0.2876          |
| 0.3031        | 53.8721 | 6000  | 0.2828          |
| 0.3048        | 62.8507 | 7000  | 0.2812          |
| 0.2992        | 71.8294 | 8000  | 0.2794          |
| 0.3005        | 80.8081 | 9000  | 0.2772          |
| 0.3001        | 89.7868 | 10000 | 0.2766          |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.19.1