language:
- it
license: apache-2.0
library_name: transformers
tags:
- text-generation-inference
- unsloth
- mistral
- trl
- word-game
- rebus
- italian
- word-puzzle
- crossword
datasets:
- gsarti/eureka-rebus
base_model: unsloth/Phi-3-mini-4k-instruct-v0-bnb-4bit
model-index:
- name: gsarti/phi3-mini-rebus-solver-fp16
results:
- task:
type: verbalized-rebus-solving
name: Verbalized Rebus Solving
dataset:
type: gsarti/eureka-rebus
name: EurekaRebus
config: llm_sft
split: test
revision: 0f24ebc3b66cd2f8968077a5eb058be1d5af2f05
metrics:
- type: exact_match
value: 0.56
name: First Pass Exact Match
- type: exact_match
value: 0.51
name: Solution Exact Match
Phi-3 Mini 4K Verbalized Rebus Solver - PEFT Adapters 🇮🇹
This model is a parameter-efficient fine-tuned version of Phi-3 Mini 4K trained for verbalized rebus solving in Italian, as part of the release for our paper Non Verbis, Sed Rebus: Large Language Models are Weak Solvers of Italian Rebuses. The task of verbalized rebus solving consists of converting an encrypted sequence of letters and crossword definitions into a solution phrase matching the word lengths specified in the solution key. An example is provided below.
The model was trained in 4-bit precision for 5070 steps on the verbalized subset of the EurekaRebus using QLora via Unsloth and TRL. This repository contains PEFT-compatible adapters saved throughout training. Use the revision=<GIT_HASH>
parameter in from_pretrained
to load mid-training adapter checkpoints.
We also provide a merged version of the model and 8-bit GGUF versions of this model for analysis and local execution.
Using the Model
The following example shows how to perform inference using Unsloth or Transformers:
# With Unsloth (efficient, requires GPU)
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "gsarti/phi3-mini-rebus-solver-adapters",
max_seq_length = 1248,
load_in_4bit = True,
)
# Inference
verbalized_rebus = "[Materiale espulso dai vulcani] R O [Strumento del calzolaio] [Si trovano ai lati del bacino] C I [Si ingrassano con la polenta] E I N [Contiene scorte di cibi] B [Isola in francese]"
solution_key = "1 ' 5 6 5 3 3 1 14"
template = """<s><|user|>
Risolvi gli indizi tra parentesi per ottenere una prima lettura, e usa la chiave di lettura per ottenere la soluzione del rebus.
Rebus: {rebus}
Chiave risolutiva: {key}<|end|>
<|assistant|>"""
input = template.format(rebus=verbalized_rebus, key=solution_key)
inputs = tokenizer(input, return_tensors="pt")["input_ids"]
outputs = model.generate(input_ids = inputs, max_new_tokens = 500, use_cache = True)
model_generations = tokenizer.batch_decode(outputs)
print(model_generations[0])
# Procediamo alla risoluzione del rebus passo per passo:
# - [Materiale espulso dai vulcani] = lava
# - R O = R O
# - [Strumento del calzolaio] = lesina
# - [Si trovano ai lati del bacino] = anche
# - C I = C I
# - [Si ingrassano con la polenta] = oche
# - E I N = E I N
# - [Contiene scorte di cibi] = silos
# - B = B
# - [Isola in francese] = ile
#
# Prima lettura: lava R O lesina anche C I oche E I N silos B ile
#
# Ora componiamo la soluzione seguendo la chiave risolutiva:
# 1 = L
# ' = '
# 5 = avaro
# 6 = lesina
# 5 = anche
# 3 = ciò
# 3 = che
# 1 = è
# 14 = insilosbile
#
# Soluzione: L'avaro lesina anche ciò che è insilosbile
See the official code release for more examples.
Local usage with Ollama
A ready-to-use local version of this model is hosted on the Ollama Hub and can be used as follows:
ollama run gsarti/phi3-mini-rebus-solver "Rebus: [Materiale espulso dai vulcani] R O [Strumento del calzolaio] [Si trovano ai lati del bacino] C I [Si ingrassano con la polenta] E I N [Contiene scorte di cibi] B [Isola in francese]\nChiave risolutiva: 1 ' 5 6 5 3 3 1 14"
Limitations
Lexical overfitting: As remarked in the related publication, the model overfitted the set of definitions/answers for first pass words. As a result, words that were explicitly witheld from the training set cause significant performance degradation when used as solutions for verbalized rebuses' definitions. You can compare model performances between in-domain and out-of-domain test examples to verify this limitation.
Model curators
For problems or updates on this model, please contact gabriele.sarti996@gmail.com.
Citation Information
If you use this model in your work, please cite our paper as follows:
@article{sarti-etal-2024-rebus,
title = "Non Verbis, Sed Rebus: Large Language Models are Weak Solvers of Italian Rebuses",
author = "Sarti, Gabriele and Caselli, Tommaso and Nissim, Malvina and Bisazza, Arianna",
journal = "ArXiv",
month = jul,
year = "2024",
volume = {abs/2408.00584},
url = {https://arxiv.org/abs/2408.00584},
}
Acknowledgements
We are grateful to the Associazione Culturale "Biblioteca Enigmistica Italiana - G. Panini" for making its rebus collection freely accessible on the Eureka5 platform.