File size: 3,062 Bytes
1f1a9f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172ac59
1f1a9f0
 
 
 
172ac59
1f1a9f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172ac59
 
 
 
 
 
 
 
 
 
 
 
 
 
1f1a9f0
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
base_model: microsoft/Phi-3.5-mini-instruct
library_name: peft
license: mit
metrics:
- rouge
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: grounded-ai-rag-3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/josh-longenecker1-groundedai/grounded-ai-rag-relevance/runs/bnvts1hx)
# grounded-ai-rag-3

This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4248
- Rouge1: 1.0
- Rouge2: 0.0
- Rougel: 1.0
- Rougelsum: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 15
- training_steps: 150

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 1.0354        | 5.0   | 5    | 1.7161          | 1.0    | 0.0    | 1.0    | 1.0       |
| 0.9393        | 10.0  | 10   | 1.5598          | 1.0    | 0.0    | 1.0    | 1.0       |
| 0.8098        | 15.0  | 15   | 1.3913          | 1.0    | 0.0    | 1.0    | 1.0       |
| 0.6939        | 20.0  | 20   | 1.2470          | 1.0    | 0.0    | 1.0    | 1.0       |
| 0.5662        | 25.0  | 25   | 1.0859          | 1.0    | 0.0    | 1.0    | 1.0       |
| 0.4027        | 30.0  | 30   | 0.9390          | 1.0    | 0.0    | 1.0    | 1.0       |
| 0.2595        | 35.0  | 35   | 0.8088          | 1.0    | 0.0    | 1.0    | 1.0       |
| 0.159         | 40.0  | 40   | 0.8187          | 1.0    | 0.0    | 1.0    | 1.0       |
| 0.1225        | 45.0  | 45   | 0.9043          | 1.0    | 0.0    | 1.0    | 1.0       |
| 0.0808        | 50.0  | 50   | 0.9985          | 1.0    | 0.0    | 1.0    | 1.0       |
| 0.0334        | 55.0  | 55   | 1.1227          | 1.0    | 0.0    | 1.0    | 1.0       |
| 0.0121        | 60.0  | 60   | 1.2501          | 1.0    | 0.0    | 1.0    | 1.0       |
| 0.0052        | 65.0  | 65   | 1.3779          | 1.0    | 0.0    | 1.0    | 1.0       |
| 0.0043        | 70.0  | 70   | 1.4248          | 1.0    | 0.0    | 1.0    | 1.0       |


### Framework versions

- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1