File size: 5,939 Bytes
f3f17e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
import sys
import torch
import warnings
import hashlib
import math
import importlib
import numpy as np
from tqdm import tqdm
from scipy.io import wavfile
import librosa
import pdb
from uvr5_pack.lib_v5 import spec_utils
from uvr5_pack.utils import _get_name_params, inference
from uvr5_pack.lib_v5.model_param_init import ModelParameters


warnings.filterwarnings("ignore")


class _audio_pre_():
    def __init__(self, model_path, device, is_half):
        self.model_path = model_path
        self.device = device
        self.data = {
            # Processing Options
            'postprocess': False,
            'tta': False,
            # Constants
            'window_size': 320,
            'agg': 10,
            'high_end_process': 'mirroring',
        }
        nn_arch_sizes = [
            31191, # default
            33966,61968, 123821, 123812, 537238 # custom
        ]
        self.nn_architecture = list('{}KB'.format(s) for s in nn_arch_sizes)
        model_size = math.ceil(os.stat(model_path).st_size / 1024)
        nn_architecture = '{}KB'.format(min(nn_arch_sizes, key=lambda x:abs(x-model_size)))
        nets = importlib.import_module('uvr5_pack.lib_v5.nets' + f'_{nn_architecture}'.replace('_{}KB'.format(nn_arch_sizes[0]), ''), package=None)
        model_hash = hashlib.md5(open(model_path, 'rb').read()).hexdigest()
        param_name, model_params_d = _get_name_params(model_path, model_hash)

        mp = ModelParameters(model_params_d)
        model = nets.CascadedASPPNet(mp.param['bins'] * 2)
        cpk = torch.load(model_path, map_location='cpu')
        model.load_state_dict(cpk)
        model.eval()
        if is_half:
            model = model.half().to(device)
        else:
            model = model.to(device)

        self.mp = mp
        self.model = model

    def _path_audio_(self, music_file, ins_root=None, vocal_root=None):
        if ins_root is None and vocal_root is None:
            return "No save root."
        name = os.path.basename(music_file)
        if ins_root is not None:
            os.makedirs(ins_root, exist_ok=True)
        if vocal_root is not None:
            os.makedirs(vocal_root, exist_ok=True)
        X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
        bands_n = len(self.mp.param['band'])
        for d in range(bands_n, 0, -1):
            bp = self.mp.param['band'][d]
            if d == bands_n:
                X_wave[d], _ = librosa.core.load(
                    music_file, bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
                if X_wave[d].ndim == 1:
                    X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
            else:
                X_wave[d] = librosa.core.resample(X_wave[d+1], self.mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])

            X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(X_wave[d], bp['hl'], bp['n_fft'], self.mp.param['mid_side'], self.mp.param['mid_side_b2'], self.mp.param['reverse'])
            if d == bands_n and self.data['high_end_process'] != 'none':
                input_high_end_h = (bp['n_fft'] // 2 - bp['crop_stop']) + (self.mp.param['pre_filter_stop'] - self.mp.param['pre_filter_start'])
                input_high_end = X_spec_s[d][:, bp['n_fft']//2-input_high_end_h:bp['n_fft']//2, :]

        X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
        aggresive_set = float(self.data['agg']/100)
        aggressiveness = {'value': aggresive_set, 'split_bin': self.mp.param['band'][1]['crop_stop']}
        with torch.no_grad():
            pred, X_mag, X_phase = inference(X_spec_m, self.device, self.model, aggressiveness, self.data)

        if self.data['postprocess']:
            pred_inv = np.clip(X_mag - pred, 0, np.inf)
            pred = spec_utils.mask_silence(pred, pred_inv)

        y_spec_m = pred * X_phase
        v_spec_m = X_spec_m - y_spec_m

        if ins_root is not None:
            if self.data['high_end_process'].startswith('mirroring'):
                input_high_end_ = spec_utils.mirroring(self.data['high_end_process'], y_spec_m, input_high_end, self.mp)
                wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp, input_high_end_h, input_high_end_)
            else:
                wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
            print('%s instruments done' % name)
            # 分离文件名和扩展名
            file_name, ext = os.path.splitext(name)
            wavfile.write(os.path.join(ins_root, '和声_{}{}'.format(file_name, ext)), self.mp.param['sr'], (np.array(wav_instrument)*32768).astype(np.int16))
        if vocal_root is not None:
            if self.data['high_end_process'].startswith('mirroring'):
                input_high_end_ = spec_utils.mirroring(self.data['high_end_process'], v_spec_m, input_high_end, self.mp)
                wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp, input_high_end_h, input_high_end_)
            else:
                wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
            print('%s vocals done' % name)
            # 分离文件名和扩展名
            file_name, ext = os.path.splitext(name)
            wavfile.write(os.path.join(vocal_root, '{}{}'.format(file_name, ext)), self.mp.param['sr'], (np.array(wav_vocals)*32768).astype(np.int16))



if __name__ == '__main__':
    device = 'cuda'
    is_half = True
    model_path = 'uvr5_weights/5_HP-Karaoke-UVR.pth'
    pre_fun = _audio_pre_(model_path=model_path, device=device, is_half=True)

    # 获取混响文件夹内的所有.wav文件路径
    audio_folder = 'output'
    wav_files = [os.path.join(audio_folder, file) for file in os.listdir(audio_folder) if file.endswith('.wav')]

    # 遍历每个音频文件进行处理
    save_path = 'echo'
    for wav_file in wav_files:
        pre_fun._path_audio_(wav_file, save_path, save_path)