File size: 13,649 Bytes
2a94974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
# import logging
# import os
import pathlib
import random
# import sys
# from typing import Dict
#
# import lightning.pytorch as pl
# import matplotlib
import numpy as np
import torch.utils.data
# from lightning.pytorch.utilities.rank_zero import rank_zero_debug, rank_zero_info, rank_zero_only
from matplotlib import pyplot as plt
from torch import nn

from torch.utils.data import Dataset
# from torchmetrics import Metric, MeanMetric

import utils
from models.nsf_univnet.nsfunivnet import nsfUnivNet
from modules.loss.nsf_univloss import nsf_univloss
# from models.ddsp_univnet.ddspunivnet import ddspUnivNet
# from models.univnet.univnet import UnivNet
# from models.lvc_ddspgan.lvc_ddspgan import DDSPgan
# from models.nsf_HiFigan.models import Generator, AttrDict, MultiScaleDiscriminator, MultiPeriodDiscriminator

# from modules.loss.ddsp_univloss import ddsp_univloss
from modules.univ_D.discriminator import MultiPeriodDiscriminator, MultiResSpecDiscriminator

from training.base_task_gan import GanBaseTask


from utils.wav2mel import PitchAdjustableMelSpectrogram
def spec_to_figure(spec, vmin=None, vmax=None):
    if isinstance(spec, torch.Tensor):
        spec = spec.cpu().numpy()
    fig = plt.figure(figsize=(12, 9),dpi=100)
    plt.pcolor(spec.T, vmin=vmin, vmax=vmax)
    plt.tight_layout()
    return fig

class ddsp_univ_dataset(Dataset):

    def __init__(self, config: dict, data_dir, infer=False):
        super().__init__()
        self.config = config

        self.data_dir = data_dir if isinstance(data_dir, pathlib.Path) else pathlib.Path(data_dir)
        with open(self.data_dir, 'r', encoding='utf8') as f:
            fills = f.read().strip().split('\n')
        self.data_index = fills
        self.infer = infer
        self.volume_aug = self.config['volume_aug']
        self.volume_aug_prob = self.config['volume_aug_prob'] if not infer else 0


    def __getitem__(self, index):
        data_path = self.data_index[index]
        data = np.load(data_path)

        return {'f0':data['f0'],'spectrogram':data['mel'],'audio':data['audio'],'uv':data['uv']}

    def __len__(self):
        return len(self.data_index)

    def collater(self, minibatch):
        samples_per_frame = self.config['hop_size']
        if self.infer:
            crop_mel_frames = 0
        else:
            crop_mel_frames = self.config['crop_mel_frames']

        for record in minibatch:

            # Filter out records that aren't long enough.
            if len(record['spectrogram']) < crop_mel_frames:
                del record['spectrogram']
                del record['audio']
                del record['f0']
                del record['uv']
                continue

            start = random.randint(0, record['spectrogram'].shape[0] - 1 - crop_mel_frames)
            end = start + crop_mel_frames
            if self.infer:
                record['spectrogram'] = record['spectrogram'].T
                record['f0'] = record['f0']
                record['uv']=record['uv']
            else:
                record['spectrogram'] = record['spectrogram'][start:end].T
                record['f0'] = record['f0'][start:end]
                record['uv']=record['uv'][start:end]
            start *= samples_per_frame
            end *= samples_per_frame
            if self.infer:
                cty=(len(record['spectrogram'].T) * samples_per_frame)
                record['audio'] = record['audio'][:cty]
                record['audio'] = np.pad(record['audio'], (
                    0, (len(record['spectrogram'].T) * samples_per_frame) - len(record['audio'])),
                                         mode='constant')
                pass
            else:
                # record['spectrogram'] = record['spectrogram'][start:end].T
                record['audio'] = record['audio'][start:end]
                record['audio'] = np.pad(record['audio'], (0, (end - start) - len(record['audio'])),
                                         mode='constant')

        if self.volume_aug:
            for record in minibatch:

                if random.random() < self.volume_aug_prob:
                    audio = record['audio']
                    audio_mel = record['spectrogram']
                    max_amp = float(np.max(np.abs(audio))) + 1e-5
                    max_shift = min(3, np.log(1 / max_amp))
                    log_mel_shift = random.uniform(-3, max_shift)
                    # audio *= (10 ** log_mel_shift)
                    audio *= np.exp(log_mel_shift)
                    audio_mel += log_mel_shift
                    audio_mel = torch.clamp(torch.from_numpy(audio_mel), min=np.log(1e-5)).numpy()
                    record['audio'] = audio
                    record['spectrogram'] = audio_mel

        audio = np.stack([record['audio'] for record in minibatch if 'audio' in record])

        spectrogram = np.stack([record['spectrogram'] for record in minibatch if 'spectrogram' in record])
        f0 = np.stack([record['f0'] for record in minibatch if 'f0' in record])
        uv=np.stack([record['uv'] for record in minibatch if 'uv' in record])
        return {
            'audio': torch.from_numpy(audio).unsqueeze(1),
            'mel': torch.from_numpy(spectrogram), 'f0': torch.from_numpy(f0),'uv':torch.from_numpy(uv)
        }


class stftlog:
    def __init__(self,
        n_fft=2048,
        win_length=2048,
        hop_length=512,

        center=False,):
        self.hop_length=hop_length
        self.win_size=win_length
        self.n_fft = n_fft
        self.win_size = win_length
        self.center = center
        self.hann_window = {}
    def exc(self,y):


        hann_window_key = f"{y.device}"
        if hann_window_key not in self.hann_window:
            self.hann_window[hann_window_key] = torch.hann_window(
                self.win_size, device=y.device
            )


        y = torch.nn.functional.pad(
            y.unsqueeze(1),
            (
                int((self.win_size - self.hop_length) // 2),
                int((self.win_size - self.hop_length+1) // 2),
            ),
            mode="reflect",
        )
        y = y.squeeze(1)

        spec = torch.stft(
            y,
            self.n_fft,
            hop_length=self.hop_length,
            win_length=self.win_size,
            window=self.hann_window[hann_window_key],
            center=self.center,
            pad_mode="reflect",
            normalized=False,
            onesided=True,
            return_complex=True,
        ).abs()
        return spec

class nsf_univnet_task(GanBaseTask):
    def __init__(self, config):
        super().__init__(config)
        self.TF = PitchAdjustableMelSpectrogram(        f_min=0,
        f_max=None,
        n_mels=256,)
        self.logged_gt_wav = set()
        self.stft=stftlog()
        upmel = config['model_args'].get('upmel')
        self.upmel=upmel
        # if upmel is not None:
        #     self.noisec=config['model_args']['cond_in_channels']*upmel
        # else:
        self.noisec = config['model_args']['cond_in_channels']

    def build_dataset(self):

        self.train_dataset = ddsp_univ_dataset(config=self.config,
                                                 data_dir=pathlib.Path(self.config['DataIndexPath']) / self.config[
                                                     'train_set_name'])
        self.valid_dataset = ddsp_univ_dataset(config=self.config,
                                                 data_dir=pathlib.Path(self.config['DataIndexPath']) / self.config[
                                                     'valid_set_name'], infer=True)
    def build_model(self):
        # cfg=self.config['model_args']

        # cfg.update({'sampling_rate':self.config['audio_sample_rate'],'num_mels':self.config['audio_num_mel_bins'],'hop_size':self.config['hop_size']})
        # h=AttrDict(cfg)
        self.generator=nsfUnivNet(self.config,use_weight_norm=self.config['model_args'].get('use_weight_norm',True))
        self.discriminator=nn.ModuleDict({'mrd':MultiResSpecDiscriminator(fft_sizes=self.config['model_args'].get('mrd_fft_sizes',[1024, 2048, 512]),
                 hop_sizes=self.config['model_args'].get('mrd_hop_sizes',[120, 240, 50]),
                 win_lengths= self.config['model_args'].get('mrd_win_lengths',[600, 1200, 240]),), 'mpd':MultiPeriodDiscriminator(periods=self.config['model_args']['discriminator_periods'])})

    def build_losses_and_metrics(self):
        self.mix_loss=nsf_univloss(self.config)

    def Gforward(self, sample, infer=False):
        """
        steps:
            1. run the full model
            2. calculate losses if not infer
        """
        mel=sample['mel']
        if self.upmel is not None:
            x=torch.randn(mel.size()[0],self.noisec,mel.size()[-1]*self.upmel,device=mel.device,dtype=mel.dtype).to(mel)
        else:
            x = torch.randn(mel.size()[0], self.noisec, mel.size()[-1],device=mel.device,dtype=mel.dtype).to(mel)
        wav, nsfwav=self.generator(x=x,c=mel, f0=sample['f0'])

        return {'audio':wav,'nsfwav':nsfwav,}

    def Dforward(self, Goutput):
        mrd_out,mrd_feature=self.discriminator['mrd'](Goutput)
        mpd_out,mpd_feature=self.discriminator['mpd'](Goutput)
        return (mrd_out,mrd_feature),(mpd_out,mpd_feature)

    def _training_step(self, sample, batch_idx):
        """
        :return: total loss: torch.Tensor, loss_log: dict, other_log: dict

        """
        aux_only = False
        if self.aux_step is not None:
            if self.aux_step > self.global_step:
                aux_only = True

        log_diet = {}
        opt_g, opt_d = self.optimizers()
        Goutput = self.Gforward(sample=sample)
        if not aux_only:
            Dfake = self.Dforward(Goutput=Goutput['audio'].detach())
            Dtrue = self.Dforward(Goutput=sample['audio'])
            Dloss, Dlog = self.mix_loss.Dloss(Dfake=Dfake, Dtrue=Dtrue)
            log_diet.update(Dlog)
            # if self.clip_grad_norm is not None:
            #     self.manual_backward(Dloss/self.clip_grad_norm)
            # else:
            opt_d.zero_grad()
            self.manual_backward(Dloss)
            if self.clip_grad_norm is not None:
                self.clip_gradients(opt_d, gradient_clip_val=self.clip_grad_norm, gradient_clip_algorithm="norm")
            opt_d.step()
            opt_d.zero_grad()
        if not aux_only:
            GDfake = self.Dforward(Goutput=Goutput['audio'])
            GDtrue=self.Dforward(Goutput=sample['audio'])
            GDloss, GDlog = self.mix_loss.GDloss(GDfake=GDfake,GDtrue=GDtrue)
            log_diet.update(GDlog)
        Auxloss, Auxlog = self.mix_loss.Auxloss(Goutput=Goutput, sample=sample,step=self.global_step//2)

        log_diet.update(Auxlog)
        if not aux_only:
            Gloss=GDloss + Auxloss
        else:
            Gloss=Auxloss

        # if self.clip_grad_norm is not None:
        #     self.manual_backward(Gloss / self.clip_grad_norm)
        # else:
        #     self.manual_backward(Gloss)
        # if (batch_idx + 1) % self.accumulate_grad_batches == 0:
        opt_g.zero_grad()
        self.manual_backward(Gloss)
        if self.clip_grad_norm is not None:
            self.clip_gradients(opt_g, gradient_clip_val=self.clip_grad_norm, gradient_clip_algorithm="norm")
        opt_g.step()



        return log_diet

    def _validation_step(self, sample, batch_idx):

        wav=self.Gforward(sample)['audio']

        with torch.no_grad():

            # self.TF = self.TF.cpu()
            # mels = torch.log10(torch.clamp(self.TF(wav.squeeze(0).cpu().float()), min=1e-5))
            # GTmels = torch.log10(torch.clamp(self.TF(sample['audio'].squeeze(0).cpu().float()), min=1e-5))
            stfts=self.stft.exc(wav.squeeze(0).cpu().float())
            Gstfts=self.stft.exc(sample['audio'].squeeze(0).cpu().float())
            Gstfts_log10=torch.log10(torch.clamp(Gstfts, min=1e-7))
            Gstfts_log = torch.log(torch.clamp(Gstfts, min=1e-7))
            stfts_log10=torch.log10(torch.clamp(stfts, min=1e-7))
            stfts_log= torch.log(torch.clamp(stfts, min=1e-7))
            # self.plot_mel(batch_idx, GTmels.transpose(1,2), mels.transpose(1,2), name=f'diffmel_{batch_idx}')
            self.plot_mel(batch_idx, Gstfts_log10.transpose(1,2), stfts_log10.transpose(1,2), name=f'HIFImel_{batch_idx}/log10')
            # self.plot_mel(batch_idx, Gstfts_log.transpose(1, 2), stfts_log.transpose(1, 2), name=f'HIFImel_{batch_idx}/log')
            self.logger.experiment.add_audio(f'diff_{batch_idx}_', wav,
                                             sample_rate=self.config['audio_sample_rate'],
                                             global_step=self.global_step)
            if batch_idx not in self.logged_gt_wav:
                # gt_wav = self.vocoder.spec2wav(gt_mel, f0=f0)
                self.logger.experiment.add_audio(f'gt_{batch_idx}_', sample['audio'],
                                                 sample_rate=self.config['audio_sample_rate'],
                                                 global_step=self.global_step)
                self.logged_gt_wav.add(batch_idx)

        return {'l1loss':nn.L1Loss()(wav, sample['audio'])}, 1

    def plot_mel(self, batch_idx, spec, spec_out, name=None):
        name = f'mel_{batch_idx}' if name is None else name
        vmin = self.config['mel_vmin']
        vmax = self.config['mel_vmax']
        spec_cat = torch.cat([(spec_out - spec).abs() + vmin, spec, spec_out], -1)
        self.logger.experiment.add_figure(name, spec_to_figure(spec_cat[0], vmin, vmax), self.global_step)