File size: 21,957 Bytes
2a94974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
import logging
import os
import pathlib
import sys
from typing import Dict

import lightning.pytorch as pl
import matplotlib
import numpy as np
import torch.utils.data
from lightning.pytorch.utilities.rank_zero import rank_zero_debug, rank_zero_info, rank_zero_only
from torch import nn
# torch.nn.utils.weight_norm
from torch.utils.data import Dataset
from torchmetrics import Metric, MeanMetric

import utils
# from utils.indexed_datasets import IndexedDataset
from utils.training_utils import (
    DsBatchSampler, DsEvalBatchSampler,
    get_latest_checkpoint_path
)

matplotlib.use('Agg')

torch.multiprocessing.set_sharing_strategy(os.getenv('TORCH_SHARE_STRATEGY', 'file_system'))

log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
                    format=log_format, datefmt='%m/%d %I:%M:%S %p')


class BaseDataset(Dataset):
    """
        Base class for datasets.
        1. *sizes*:
            clipped length if "max_frames" is set;
        2. *num_frames*:
            unclipped length.

        Subclasses should define:
        1. *collate*:
            take the longest data, pad other data to the same length;
        2. *__getitem__*:
            the index function.
    """

    def __init__(self, config: dict, data_dir, prefix, allow_aug=False):
        super().__init__()
        self.config = config
        self.prefix = prefix
        self.data_dir = data_dir if isinstance(data_dir, pathlib.Path) else pathlib.Path(data_dir)
        self.sizes = np.load(self.data_dir / f'{self.prefix}.lengths')
        self.indexed_ds = IndexedDataset(self.data_dir, self.prefix)
        self.allow_aug = allow_aug

    @property
    def _sizes(self):
        return self.sizes

    def __getitem__(self, index):
        return self.indexed_ds[index]

    def __len__(self):
        return len(self._sizes)

    def num_frames(self, index):
        return self.size(index)

    def size(self, index):
        """Return an example's size as a float or tuple. This value is used when
        filtering a dataset with ``--max-positions``."""
        return self._sizes[index]

    def collater(self, samples):
        return {
            'size': len(samples)
        }





class GanBaseTask(pl.LightningModule):
    """
        Base class for training tasks.
        1. *load_ckpt*:
            load checkpoint;
        2. *training_step*:
            record and log the loss;
        3. *optimizer_step*:
            run backwards step;
        4. *start*:
            load training configs, backup code, log to tensorboard, start training;
        5. *configure_ddp* and *init_ddp_connection*:
            start parallel training.

        Subclasses should define:
        1. *build_model*, *build_optimizer*, *build_scheduler*:
            how to build the model, the optimizer and the training scheduler;
        2. *_training_step*:
            one training step of the model;
        3. *on_validation_end* and *_on_validation_end*:
            postprocess the validation output.
    """

    def __init__(self, config: dict, *args, **kwargs):
        # dataset configs
        super().__init__(*args, **kwargs)
        self.dataset_cls = None
        self.config = config
        # self.max_batch_frames = self.config['max_batch_frames']
        # self.max_batch_size = self.config['max_batch_size']
        # self.max_val_batch_frames = self.config['max_val_batch_frames']
        # self.max_val_batch_size = self.config['max_val_batch_size']

        # self.accumulate_grad_batches = self.config['accumulate_grad_batches']
        self.clip_grad_norm = self.config['clip_grad_norm']

        self.training_sampler = None
        self.model = None
        self.generator = None
        self.discriminator = None
        self.skip_immediate_validation = False
        self.skip_immediate_ckpt_save = False

        self.valid_losses: Dict[str, Metric] = {
            'total_loss': MeanMetric()
        }
        self.valid_metric_names = set()
        self.mix_loss = None

        self.automatic_optimization = False
        self.skip_immediate_validations = 0

        self.aux_step = self.config.get('aux_step')
        self.train_dataset = None
        self.valid_dataset = None

    ###########

    # Training, validation and testing
    ###########
    def setup(self, stage):
        self.model = self.build_model()
        self.unfreeze_all_params()
        if self.config['freezing_enabled']:
            self.freeze_params()
        if self.config['finetune_enabled'] and get_latest_checkpoint_path(
                pathlib.Path(self.config['work_dir'])) is None:
            self.load_finetune_ckpt(self.load_pre_train_model())
        self.print_arch()
        self.build_losses_and_metrics()
        self.build_dataset()
        # self.train_dataset = self.dataset_cls(
        #     config=self.config, data_dir=self.config['binary_data_dir'],
        #     prefix=self.config['train_set_name'], allow_aug=True
        # )
        # self.valid_dataset = self.dataset_cls(
        #     config=self.config, data_dir=self.config['binary_data_dir'],
        #     prefix=self.config['valid_set_name'], allow_aug=False
        # )

    def build_dataset(self):
        raise NotImplementedError()

    def get_need_freeze_state_dict_key(self, model_state_dict) -> list:
        key_list = []
        for i in self.config['frozen_params']:
            for j in model_state_dict:
                if j.startswith(i):
                    key_list.append(j)
        return list(set(key_list))

    def freeze_params(self) -> None:
        model_state_dict = self.state_dict().keys()
        freeze_key = self.get_need_freeze_state_dict_key(model_state_dict=model_state_dict)

        for i in freeze_key:
            params = self.get_parameter(i)

            params.requires_grad = False

    def unfreeze_all_params(self) -> None:
        for i in self.parameters():
            i.requires_grad = True

    def load_finetune_ckpt(
            self, state_dict
    ) -> None:

        adapt_shapes = self.config['finetune_strict_shapes']
        if not adapt_shapes:
            cur_model_state_dict = self.state_dict()
            unmatched_keys = []
            for key, param in state_dict.items():
                if key in cur_model_state_dict:
                    new_param = cur_model_state_dict[key]
                    if new_param.shape != param.shape:
                        unmatched_keys.append(key)
                        print('| Unmatched keys: ', key, new_param.shape, param.shape)
            for key in unmatched_keys:
                del state_dict[key]
        self.load_state_dict(state_dict, strict=False)

    def load_pre_train_model(self):

        pre_train_ckpt_path = self.config.get('finetune_ckpt_path')
        blacklist = self.config.get('finetune_ignored_params')
        if blacklist is None:
            blacklist = []
        # if whitelist is  None:
        #     raise RuntimeError("")

        if pre_train_ckpt_path is not None:
            ckpt = torch.load(pre_train_ckpt_path)

            state_dict = {}
            for i in ckpt['state_dict']:
                # if 'diffusion' in i:
                # if i in rrrr:
                #     continue
                skip = False
                for b in blacklist:
                    if i.startswith(b):
                        skip = True
                        break

                if skip:
                    continue

                state_dict[i] = ckpt['state_dict'][i]
                print(i)
            return state_dict
        else:
            raise RuntimeError("")

    def build_model(self):
        raise NotImplementedError()

    @rank_zero_only
    def print_arch(self):
        utils.print_arch(self)

    def build_losses_and_metrics(self):
        raise NotImplementedError()

    def register_metric(self, name: str, metric: Metric):
        assert isinstance(metric, Metric)
        setattr(self, name, metric)
        self.valid_metric_names.add(name)

    # def run_model(self, sample, infer=False):
    #     """
    #     steps:
    #         1. run the full model
    #         2. calculate losses if not infer
    #     """
    #     raise NotImplementedError()

    def Gforward(self, sample, infer=False):
        """
        steps:
            1. run the full model
            2. calculate losses if not infer
        """
        raise NotImplementedError()

    def Dforward(self, Goutput):
        """
        steps:
            1. run the full model
            2. calculate losses if not infer
        """
        raise NotImplementedError()

    # def on_train_epoch_start(self):
    #     if self.training_sampler is not None:
    #         self.training_sampler.set_epoch(self.current_epoch)

    def _training_step(self, sample, batch_idx):
        """
        :return: total loss: torch.Tensor, loss_log: dict, other_log: dict

        """
        aux_only = False
        if self.aux_step is not None:
            if self.aux_step > self.global_step:
                aux_only = True

        log_diet = {}
        opt_g, opt_d = self.optimizers()
        Goutput = self.Gforward(sample=sample)
        if not aux_only:
            Dfake = self.Dforward(Goutput=Goutput['audio'].detach())
            Dtrue = self.Dforward(Goutput=sample['audio'])
            Dloss, Dlog = self.mix_loss.Dloss(Dfake=Dfake, Dtrue=Dtrue)
            log_diet.update(Dlog)
            # if self.clip_grad_norm is not None:
            #     self.manual_backward(Dloss/self.clip_grad_norm)
            # else:
            opt_d.zero_grad()
            self.manual_backward(Dloss)
            if self.clip_grad_norm is not None:
                self.clip_gradients(opt_d, gradient_clip_val=self.clip_grad_norm, gradient_clip_algorithm="norm")
            opt_d.step()
            opt_d.zero_grad()
        if not aux_only:
            GDfake = self.Dforward(Goutput=Goutput['audio'])
            GDtrue = self.Dforward(Goutput=sample['audio'])
            GDloss, GDlog = self.mix_loss.GDloss(GDfake=GDfake,GDtrue=GDtrue)
            log_diet.update(GDlog)
        Auxloss, Auxlog = self.mix_loss.Auxloss(Goutput=Goutput, sample=sample)

        log_diet.update(Auxlog)
        if not aux_only:
            Gloss=GDloss + Auxloss
        else:
            Gloss=Auxloss

        # if self.clip_grad_norm is not None:
        #     self.manual_backward(Gloss / self.clip_grad_norm)
        # else:
        #     self.manual_backward(Gloss)
        # if (batch_idx + 1) % self.accumulate_grad_batches == 0:
        opt_g.zero_grad()
        self.manual_backward(Gloss)
        if self.clip_grad_norm is not None:
            self.clip_gradients(opt_g, gradient_clip_val=self.clip_grad_norm, gradient_clip_algorithm="norm")
        opt_g.step()



        return log_diet

    def training_step(self, sample, batch_idx, ):  # todo
        log_outputs = self._training_step(sample, batch_idx)

        # logs to progress bar
        self.log_dict({'loss':sum(log_outputs.values())}, prog_bar=True, logger=False, on_step=True, on_epoch=False)
        # self.log('lr', self.lr_schedulers().get_last_lr()[0], prog_bar=True, logger=False, on_step=True, on_epoch=False)
        # logs to tensorboard
        if self.global_step % self.config['log_interval'] == 0:
            tb_log = {f'training/{k}': v for k, v in log_outputs.items()}
            # tb_log['training/lr'] = self.lr_schedulers().get_last_lr()[0]
            self.logger.log_metrics(tb_log, step=self.global_step)
        #
        # return total_loss

    # def on_before_optimizer_step(self, *args, **kwargs):
    #     self.log_dict(grad_norm(self, norm_type=2))

    def _on_validation_start(self):
        pass

    def on_validation_start(self):
        self._on_validation_start()
        for metric in self.valid_losses.values():
            metric.to(self.device)
            metric.reset()

    def _validation_step(self, sample, batch_idx):
        """

        :param sample:
        :param batch_idx:
        :return: loss_log: dict, weight: int
        """
        raise NotImplementedError()

    def validation_step(self, sample, batch_idx):
        """

        :param sample:
        :param batch_idx:

        """

        # if self.skip_immediate_validations == 0 and self.global_step != 0:
        #     self.skip_immediate_validation = True
        #     self.skip_immediate_validations = 1
        # if self.global_step == 0:
        #     self.skip_immediate_validations = 1

        if self.skip_immediate_validation:
            rank_zero_debug(f"Skip validation {batch_idx}")
            return {}
        with torch.autocast(self.device.type, enabled=False):
            losses, weight = self._validation_step(sample, batch_idx)
        losses = {
            'total_loss': sum(losses.values()),
            **losses
        }
        for k, v in losses.items():
            if k not in self.valid_losses:
                self.valid_losses[k] = MeanMetric().to(self.device)
            self.valid_losses[k].update(v, weight=weight)  # weight=1
        return losses

    def on_validation_epoch_end(self):
        if self.skip_immediate_validation:
            self.skip_immediate_validation = False
            self.skip_immediate_ckpt_save = True
            return
        loss_vals = {k: v.compute() for k, v in self.valid_losses.items()}
        self.log('val_loss', loss_vals['total_loss'], on_epoch=True, prog_bar=True, logger=False, sync_dist=True)
        self.logger.log_metrics({f'validation/{k}': v for k, v in loss_vals.items()}, step=self.global_step)
        for metric in self.valid_losses.values():
            metric.reset()
        metric_vals = {k: getattr(self, k).compute() for k in self.valid_metric_names}
        self.logger.log_metrics({f'metrics/{k}': v for k, v in metric_vals.items()}, step=self.global_step)
        for metric_name in self.valid_metric_names:
            getattr(self, metric_name).reset()

    # noinspection PyMethodMayBeStatic
    def build_scheduler(self, optimizer):
        from utils import build_lr_scheduler_from_config

        scheduler_args = self.config['lr_scheduler_args']
        assert scheduler_args['scheduler_cls'] != ''
        scheduler = build_lr_scheduler_from_config(optimizer, scheduler_args)
        return scheduler

    # noinspection PyMethodMayBeStatic
    def build_optimizer(self, model, optimizer_args):
        from utils import build_object_from_class_name

        assert optimizer_args['optimizer_cls'] != ''
        if 'beta1' in optimizer_args and 'beta2' in optimizer_args and 'betas' not in optimizer_args:
            optimizer_args['betas'] = (optimizer_args['beta1'], optimizer_args['beta2'])

        if isinstance(model, nn.ModuleList):
            parameterslist = []
            for i in model:
                parameterslist = parameterslist + list(i.parameters())
            optimizer = build_object_from_class_name(
                optimizer_args['optimizer_cls'],
                torch.optim.Optimizer,
                parameterslist,
                **optimizer_args
            )
        elif isinstance(model, nn.ModuleDict):
            parameterslist = []
            for i in model:
                # parameterslist = parameterslist + list(model[i].parameters())
                parameterslist.append({'params': model[i].parameters()})
            optimizer = build_object_from_class_name(
                optimizer_args['optimizer_cls'],
                torch.optim.Optimizer,
                parameterslist,
                **optimizer_args
            )
        elif isinstance(model, nn.Module):

            optimizer = build_object_from_class_name(
                optimizer_args['optimizer_cls'],
                torch.optim.Optimizer,
                model.parameters(),
                **optimizer_args
            )
        else:
            raise RuntimeError("")

        return optimizer

    def configure_optimizers(self):
        optG = self.build_optimizer(self.generator, optimizer_args=self.config['generater_optimizer_args'])
        optD = self.build_optimizer(self.discriminator, optimizer_args=self.config['discriminate_optimizer_args'])

        return [optG, optD]
        # scheduler = self.build_scheduler(optm)
        # if scheduler is None:
        #     return optm
        # return {
        #     "optimizer": optm,
        #     "lr_scheduler": {
        #         "scheduler": scheduler,
        #         "interval": "step",
        #         "frequency": 1
        #     }
        # }

    def train_dataloader(self):
        # self.training_sampler = DsBatchSampler(
        #     self.train_dataset,
        #     max_batch_frames=self.max_batch_frames,
        #     max_batch_size=self.max_batch_size,
        #     num_replicas=(self.trainer.distributed_sampler_kwargs or {}).get('num_replicas', 1),
        #     rank=(self.trainer.distributed_sampler_kwargs or {}).get('rank', 0),
        #     sort_by_similar_size=self.config['sort_by_len'],
        #     required_batch_count_multiple=self.config['accumulate_grad_batches'],
        #     frame_count_grid=self.config['sampler_frame_count_grid'],
        #     shuffle_sample=True,
        #     shuffle_batch=False,
        #     seed=self.config['seed']
        # )
        return torch.utils.data.DataLoader(self.train_dataset,
                                           collate_fn=self.train_dataset.collater,
                                           batch_size=self.config['batch_size'],
                                           # batch_sampler=self.training_sampler,
                                           num_workers=self.config['ds_workers'],
                                           prefetch_factor=self.config['dataloader_prefetch_factor'],
                                           pin_memory=True,
                                           persistent_workers=True)

    def val_dataloader(self):
        # sampler = DsEvalBatchSampler(
        #     self.valid_dataset,
        #     max_batch_frames=self.max_val_batch_frames,
        #     max_batch_size=self.max_val_batch_size,
        #     rank=(self.trainer.distributed_sampler_kwargs or {}).get('rank', 0),
        #     batch_by_size=False
        # )
        return torch.utils.data.DataLoader(self.valid_dataset,
                                           collate_fn=self.valid_dataset.collater,
                                           batch_size=1,
                                           # batch_sampler=sampler,
                                           num_workers=self.config['ds_workers'],
                                           prefetch_factor=self.config['dataloader_prefetch_factor'],
                                           shuffle=False)

    def test_dataloader(self):
        return self.val_dataloader()

    def on_test_start(self):
        self.on_validation_start()

    def test_step(self, sample, batch_idx):
        return self.validation_step(sample, batch_idx)

    def on_test_end(self):
        return self.on_validation_end()

    def on_save_checkpoint(self, checkpoint):
        pass
        # checkpoint['trainer_stage'] = self.trainer.state.stage.value

    # def on_load_checkpoint(self, checkpoint):
    #     # from lightning.pytorch.trainer.states import RunningStage
    #     from utils import simulate_lr_scheduler
    #     # if checkpoint.get('trainer_stage', '') == RunningStage.VALIDATING.value:
    #     #     self.skip_immediate_validation = True
    #
    #     optimizer_args = self.config['optimizer_args']
    #     scheduler_args = self.config['lr_scheduler_args']
    #
    #     if 'beta1' in optimizer_args and 'beta2' in optimizer_args and 'betas' not in optimizer_args:
    #         optimizer_args['betas'] = (optimizer_args['beta1'], optimizer_args['beta2'])
    #
    #     if checkpoint.get('optimizer_states', None):
    #         opt_states = checkpoint['optimizer_states']
    #         assert len(opt_states) == 1  # only support one optimizer
    #         opt_state = opt_states[0]
    #         for param_group in opt_state['param_groups']:
    #             for k, v in optimizer_args.items():
    #                 if k in param_group and param_group[k] != v:
    #                     if 'lr_schedulers' in checkpoint and checkpoint['lr_schedulers'] and k == 'lr':
    #                         continue
    #                     rank_zero_info(f'| Overriding optimizer parameter {k} from checkpoint: {param_group[k]} -> {v}')
    #                     param_group[k] = v
    #             if 'initial_lr' in param_group and param_group['initial_lr'] != optimizer_args['lr']:
    #                 rank_zero_info(
    #                     f'| Overriding optimizer parameter initial_lr from checkpoint: {param_group["initial_lr"]} -> {optimizer_args["lr"]}'
    #                 )
    #                 param_group['initial_lr'] = optimizer_args['lr']
    #
    #     if checkpoint.get('lr_schedulers', None):
    #         assert checkpoint.get('optimizer_states', False)
    #         assert len(checkpoint['lr_schedulers']) == 1  # only support one scheduler
    #         checkpoint['lr_schedulers'][0] = simulate_lr_scheduler(
    #             optimizer_args, scheduler_args,
    #             step_count=checkpoint['global_step'],
    #             num_param_groups=len(checkpoint['optimizer_states'][0]['param_groups'])
    #         )
    #         for param_group, new_lr in zip(
    #                 checkpoint['optimizer_states'][0]['param_groups'],
    #                 checkpoint['lr_schedulers'][0]['_last_lr'],
    #         ):
    #             if param_group['lr'] != new_lr:
    #                 rank_zero_info(
    #                     f'| Overriding optimizer parameter lr from checkpoint: {param_group["lr"]} -> {new_lr}')
    #                 param_group['lr'] = new_lr