File size: 5,957 Bytes
2a94974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import torch
import torch.nn as nn
import torch.nn.functional as F

from modules.ddsp.loss import HybridLoss
from modules.loss.stft_loss import warp_stft
from utils.wav2mel import PitchAdjustableMelSpectrogram


class ddsp_univloss(nn.Module):
    def __init__(self, config: dict):
        super().__init__()
        self.mel = PitchAdjustableMelSpectrogram(sample_rate=config['audio_sample_rate'],
                                                 n_fft=config['fft_size'],
                                                 win_length=config['win_size'],
                                                 hop_length=config['hop_size'],
                                                 f_min=config['fmin'],
                                                 f_max=config['fmax_for_loss'],
                                                 n_mels=config['audio_num_mel_bins'], )
        self.L1loss = nn.L1Loss()
        self.labauxloss = config.get('lab_aux_loss', 45)
        self.labddsploss=config.get('lab_ddsp_loss', 2)
        # self.stft=warp_stft({'fft_sizes':[1024, 2048, 512,],'hop_sizes':[120, 240, 50,],'win_lengths':[600, 1200, 240,]})

        # self.stft = warp_stft(
        #     {'fft_sizes': [2048, 2048, 4096, 1024, 512, 256, 128], 'hop_sizes': [512, 240, 480, 100, 50, 25, 12],
        #      'win_lengths': [2048, 1200, 2400, 480, 240, 120, 60]})
        self.stft = warp_stft({'fft_sizes': config['loss_fft_sizes'], 'hop_sizes': config['loss_hop_sizes'],
                           'win_lengths': config['loss_win_lengths']})

        self.deuv = config.get('detuv', 2000)

        self.ddsploss = HybridLoss(block_size=config['hop_size'], fft_min=config['ddsp_fftmin'],
                                   fft_max=config['ddsp_fftmax'], n_scale=config['ddsp_nscale'],
                                   lambda_uv=config['ddsp_lambdauv'], device='cuda')
        # fft_sizes = [2048, 4096, 1024, 512, 256, 128],
        # hop_sizes = [240, 480, 100, 50, 25, 12],
        # win_lengths = [1200, 2400, 480, 240, 120, 60]

    def discriminator_loss(self, disc_real_outputs, disc_generated_outputs):
        loss = 0
        rlosses = 0
        glosses = 0
        r_losses = []
        g_losses = []

        for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
            r_loss = torch.mean((1 - dr) ** 2)
            g_loss = torch.mean(dg ** 2)
            loss += r_loss + g_loss
            rlosses += r_loss.item()
            glosses += g_loss.item()
            r_losses.append(r_loss.item())
            g_losses.append(g_loss.item())

        return loss, rlosses, glosses, r_losses, g_losses

    def Dloss(self, Dfake, Dtrue):

        (Fmrd_out, _), (Fmpd_out, _) = Dfake
        (Tmrd_out, _), (Tmpd_out, _) = Dtrue
        mrdloss, mrdrlosses, mrdglosses, _, _ = self.discriminator_loss(Tmrd_out, Fmrd_out)
        mpdloss, mpdrlosses, mpdglosses, _, _ = self.discriminator_loss(Tmpd_out, Fmpd_out)
        loss = mrdloss + mpdloss
        return loss, {'DmrdlossF': mrdglosses, 'DmrdlossT': mrdrlosses, 'DmpdlossT': mpdrlosses,
                      'DmpdlossF': mpdglosses}

    def feature_loss(self, fmap_r, fmap_g):
        loss = 0
        for dr, dg in zip(fmap_r, fmap_g):
            for rl, gl in zip(dr, dg):
                loss += torch.mean(torch.abs(rl - gl))

        return loss * 2

    def GDloss(self, GDfake, GDtrue):
        loss = 0
        gen_losses = []
        mrd_losses = 0
        mpd_losses = 0
        (mrd_out, Fmrd_feature), (mpd_out, Fmpd_feature) = GDfake
        (_, Tmrd_feature), (_, Tmpd_feature) = GDtrue
        for dg in mrd_out:
            l = torch.mean((1 - dg) ** 2)
            gen_losses.append(l.item())
            # loss += l
            mrd_losses = l + mrd_losses

        for dg in mpd_out:
            l = torch.mean((1 - dg) ** 2)
            gen_losses.append(l.item())
            # loss += l
            mpd_losses = l + mpd_losses

        mrd_feature_loss = self.feature_loss(Tmrd_feature, Fmrd_feature)
        mpd_feature_loss = self.feature_loss(Tmpd_feature, Fmpd_feature)
        # loss +=msd_feature_loss
        # loss +=mpd_feature_loss
        loss = mrd_feature_loss + mpd_feature_loss + mpd_losses + mrd_losses
        # (msd_losses, mpd_losses), (msd_feature_loss, mpd_feature_loss), gen_losses
        return loss, {'Gmrdloss': mrd_losses, 'Gmpdloss': mpd_losses, 'Gmrd_feature_loss': mrd_feature_loss,
                      'Gmpd_feature_loss': mpd_feature_loss}

    # def Auxloss(self,Goutput, sample):
    #
    #     Gmel=self.mel.dynamic_range_compression_torch(self.mel(Goutput['audio'].squeeze(1)))
    #     # Rmel=sample['mel']
    #     Rmel = self.mel.dynamic_range_compression_torch(self.mel(sample['audio'].squeeze(1)))
    #     loss=self.L1loss(Gmel, Rmel)*self.labauxloss
    #     return loss,{'auxloss':loss}

    def Auxloss(self, Goutput, sample, step):

        # Gmel=self.mel.dynamic_range_compression_torch(self.mel(Goutput['audio'].squeeze(1)))
        # # Rmel=sample['mel']
        # Rmel = self.mel.dynamic_range_compression_torch(self.mel(sample['audio'].squeeze(1)))
        detach_uv = False
        if step < self.deuv:
            detach_uv = True

        #
        lossddsp, (loss_rss, loss_uv) = self.ddsploss(Goutput['ddspwav'].squeeze(1), Goutput['s_h'],
                                                sample['audio'].squeeze(1),sample['uv'].float(),
                                                  detach_uv=detach_uv,
                                                  uv_tolerance=0.15)

        # lossddsp=0
        # loss_rss=0
        # loss_uv=0


        sc_loss, mag_loss = self.stft.stft(Goutput['audio'].squeeze(1), sample['audio'].squeeze(1))
        loss = (sc_loss + mag_loss) * self.labauxloss +lossddsp*self.labddsploss
        return loss, {'auxloss': loss, 'auxloss_sc_loss': sc_loss, 'auxloss_mag_loss': mag_loss,'ddsploss':lossddsp,'ddsp_loss_rss':loss_rss,'ddsp_lossuv':loss_uv}