File size: 12,128 Bytes
2a94974 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import os
import numpy as np
import yaml
import torch
import torch.nn.functional as F
from librosa.filters import mel as librosa_mel_fn
from .mel2control import Mel2Control
from .core import frequency_filter, upsample, remove_above_fmax
class DotDict(dict):
def __getattr__(*args):
val = dict.get(*args)
return DotDict(val) if type(val) is dict else val
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
def load_model(
model_path,
device='cpu'):
config_file = os.path.join(os.path.split(model_path)[0], 'config.yaml')
with open(config_file, "r") as config:
args = yaml.safe_load(config)
args = DotDict(args)
# load model
print(' [Loading] ' + model_path)
if model_path.split('.')[-1] == 'jit':
model = torch.jit.load(model_path, map_location=torch.device(device))
else:
if args.model.type == 'Sins':
model = Sins(
sampling_rate=args.data.sampling_rate,
block_size=args.data.block_size,
win_length=args.data.n_fft,
n_harmonics=args.model.n_harmonics,
n_mag_noise=args.model.n_mag_noise,
n_mels=args.data.n_mels)
elif args.model.type == 'CombSub':
model = CombSub(
sampling_rate=args.data.sampling_rate,
block_size=args.data.block_size,
win_length=args.data.n_fft,
n_mag_harmonic=args.model.n_mag_harmonic,
n_mag_noise=args.model.n_mag_noise,
n_mels=args.data.n_mels)
else:
raise ValueError(f" [x] Unknown Model: {args.model.type}")
model.to(device)
ckpt = torch.load(model_path, map_location=torch.device(device))
model.load_state_dict(ckpt['model'])
model.eval()
return model, args
class Audio2Mel(torch.nn.Module):
def __init__(
self,
hop_length,
sampling_rate,
n_mel_channels,
win_length,
n_fft=None,
mel_fmin=0,
mel_fmax=None,
clamp = 1e-5
):
super().__init__()
n_fft = win_length if n_fft is None else n_fft
self.hann_window = {}
mel_basis = librosa_mel_fn(
sr=sampling_rate,
n_fft=n_fft,
n_mels=n_mel_channels,
fmin=mel_fmin,
fmax=mel_fmax)
mel_basis = torch.from_numpy(mel_basis).float()
self.register_buffer("mel_basis", mel_basis)
self.n_fft = n_fft
self.hop_length = hop_length
self.win_length = win_length
self.sampling_rate = sampling_rate
self.n_mel_channels = n_mel_channels
self.clamp = clamp
def forward(self, audio, keyshift=0, speed=1):
'''
audio: B x C x T
log_mel_spec: B x T_ x C x n_mel
'''
factor = 2 ** (keyshift / 12)
n_fft_new = int(np.round(self.n_fft * factor))
win_length_new = int(np.round(self.win_length * factor))
hop_length_new = int(np.round(self.hop_length * speed))
keyshift_key = str(keyshift)+'_'+str(audio.device)
if keyshift_key not in self.hann_window:
self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(audio.device)
B, C, T = audio.shape
audio = audio.reshape(B * C, T)
fft = torch.stft(
audio,
n_fft=n_fft_new,
hop_length=hop_length_new,
win_length=win_length_new,
window=self.hann_window[keyshift_key],
center=True,
return_complex=True)
magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
if keyshift != 0:
size = self.n_fft // 2 + 1
resize = magnitude.size(1)
if resize < size:
magnitude = F.pad(magnitude, (0, 0, 0, size-resize))
magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
mel_output = torch.matmul(self.mel_basis, magnitude)
log_mel_spec = torch.log10(torch.clamp(mel_output, min=self.clamp))
# log_mel_spec: B x C, M, T
T_ = log_mel_spec.shape[-1]
log_mel_spec = log_mel_spec.reshape(B, C, self.n_mel_channels ,T_)
log_mel_spec = log_mel_spec.permute(0, 3, 1, 2)
# print('og_mel_spec:', log_mel_spec.shape)
log_mel_spec = log_mel_spec.squeeze(2) # mono
return log_mel_spec
class Sins(torch.nn.Module):
def __init__(self,
sampling_rate,
block_size,
win_length,
n_harmonics,
n_mag_noise,
n_mels=80):
super().__init__()
print(' [DDSP Model] Sinusoids Additive Synthesiser')
# params
self.register_buffer("sampling_rate", torch.tensor(sampling_rate))
self.register_buffer("block_size", torch.tensor(block_size))
self.register_buffer("win_length", torch.tensor(win_length))
self.register_buffer("window", torch.hann_window(win_length))
# Mel2Control
split_map = {
'harmonic_phase': win_length // 2 + 1,
'amplitudes': n_harmonics,
'noise_magnitude': n_mag_noise,
}
self.mel2ctrl = Mel2Control(n_mels, split_map)
def forward(self, mel_frames, f0_frames, initial_phase=None, infer=True, max_upsample_dim=32):
'''
mel_frames: B x n_frames x n_mels
f0_frames: B x n_frames x 1
'''
# exciter phase
f0 = upsample(f0_frames, self.block_size)
if infer:
x = torch.cumsum(f0.double() / self.sampling_rate, axis=1)
else:
x = torch.cumsum(f0 / self.sampling_rate, axis=1)
if initial_phase is not None:
x += initial_phase.to(x) / 2 / np.pi
x = x - torch.round(x)
x = x.to(f0)
phase = 2 * np.pi * x
phase_frames = phase[:, ::self.block_size, :]
# parameter prediction
ctrls = self.mel2ctrl(mel_frames, phase_frames)
src_allpass = torch.exp(1.j * np.pi * ctrls['harmonic_phase'])
src_allpass = torch.cat((src_allpass, src_allpass[:,-1:,:]), 1)
amplitudes_frames = torch.exp(ctrls['amplitudes'])/ 128
noise_param = torch.exp(ctrls['noise_magnitude']) / 128
# sinusoids exciter signal
amplitudes_frames = remove_above_fmax(amplitudes_frames, f0_frames, self.sampling_rate / 2, level_start = 1)
n_harmonic = amplitudes_frames.shape[-1]
level_harmonic = torch.arange(1, n_harmonic + 1).to(phase)
sinusoids = 0.
for n in range(( n_harmonic - 1) // max_upsample_dim + 1):
start = n * max_upsample_dim
end = (n + 1) * max_upsample_dim
phases = phase * level_harmonic[start:end]
amplitudes = upsample(amplitudes_frames[:,:,start:end], self.block_size)
sinusoids += (torch.sin(phases) * amplitudes).sum(-1)
# harmonic part filter (all pass)
harmonic_spec = torch.stft(
sinusoids,
n_fft = self.win_length,
win_length = self.win_length,
hop_length = self.block_size,
window = self.window,
center = True,
return_complex = True)
harmonic_spec = harmonic_spec * src_allpass.permute(0, 2, 1)
harmonic = torch.istft(
harmonic_spec,
n_fft = self.win_length,
win_length = self.win_length,
hop_length = self.block_size,
window = self.window,
center = True)
# noise part filter (using constant-windowed LTV-FIR)
noise = torch.rand_like(harmonic).to(noise_param) * 2 - 1
noise = frequency_filter(
noise,
torch.complex(noise_param, torch.zeros_like(noise_param)),
hann_window = True)
signal = harmonic + noise
return signal, phase, (harmonic, noise)
class CombSub(torch.nn.Module):
def __init__(self,
sampling_rate,
block_size,
win_length,
n_mag_harmonic,
n_mag_noise,
n_mels=80):
super().__init__()
print(' [DDSP Model] Combtooth Subtractive Synthesiser')
# params
self.register_buffer("sampling_rate", torch.tensor(sampling_rate))
self.register_buffer("block_size", torch.tensor(block_size))
self.register_buffer("win_length", torch.tensor(win_length))
self.register_buffer("window", torch.hann_window(win_length))
# Mel2Control
split_map = {
'harmonic_phase': win_length // 2 + 1,
'harmonic_magnitude': n_mag_harmonic,
'noise_magnitude': n_mag_noise
}
self.mel2ctrl = Mel2Control(n_mels, split_map)
def forward(self, mel_frames, f0_frames, initial_phase=None, infer=True, **kwargs):
'''
mel_frames: B x n_frames x n_mels
f0_frames: B x n_frames x 1
'''
# exciter phase
f0 = upsample(f0_frames, self.block_size)
if infer:
x = torch.cumsum(f0.double() / self.sampling_rate, axis=1)
else:
x = torch.cumsum(f0 / self.sampling_rate, axis=1)
if initial_phase is not None:
x += initial_phase.to(x) / 2 / np.pi
x = x - torch.round(x)
x = x.to(f0)
phase_frames = 2 * np.pi * x[:, ::self.block_size, :]
# parameter prediction
ctrls = self.mel2ctrl(mel_frames, phase_frames)
src_allpass = torch.exp(1.j * np.pi * ctrls['harmonic_phase'])
src_allpass = torch.cat((src_allpass, src_allpass[:,-1:,:]), 1)
src_param = torch.exp(ctrls['harmonic_magnitude'])
noise_param = torch.exp(ctrls['noise_magnitude']) / 128
# combtooth exciter signal
combtooth = torch.sinc(self.sampling_rate * x / (f0 + 1e-3))
combtooth = combtooth.squeeze(-1)
# harmonic part filter (using dynamic-windowed LTV-FIR)
pass
harmonic = frequency_filter(
combtooth,
torch.complex(src_param, torch.zeros_like(src_param)),
hann_window = True,
half_width_frames = 1.5 * self.sampling_rate / (f0_frames + 1e-3))
# harmonic part filter (all pass)
harmonic_spec = torch.stft(
harmonic,
n_fft = self.win_length,
win_length = self.win_length,
hop_length = self.block_size,
window = self.window,
center = True,
return_complex = True)
harmonic_spec = harmonic_spec * src_allpass.permute(0, 2, 1)
harmonic = torch.istft(
harmonic_spec,
n_fft = self.win_length,
win_length = self.win_length,
hop_length = self.block_size,
window = self.window,
center = True)
# noise part filter (using constant-windowed LTV-FIR)
noise = torch.rand_like(harmonic).to(noise_param) * 2 - 1
noise = frequency_filter( #极高的cpu占用 原因未知--torch2.1
noise,
torch.complex(noise_param, torch.zeros_like(noise_param)),
hann_window = True)
signal = harmonic + noise
return signal, phase_frames, (harmonic, noise) |