File size: 14,853 Bytes
2a94974 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
import numpy as np
import torch
import logging
# from modules import LVCBlock
import torch.nn.functional as F
from torch import nn
from modules.univ_ddsp.block import LVCBlock
LRELU_SLOPE = 0.1
from modules.ddsp.vocoder import CombSub, Sins
class SineGen(torch.nn.Module):
""" Definition of sine generator
SineGen(samp_rate, harmonic_num = 0,
sine_amp = 0.1, noise_std = 0.003,
voiced_threshold = 0,
flag_for_pulse=False)
samp_rate: sampling rate in Hz
harmonic_num: number of harmonic overtones (default 0)
sine_amp: amplitude of sine-waveform (default 0.1)
noise_std: std of Gaussian noise (default 0.003)
voiced_threshold: F0 threshold for U/V classification (default 0)
flag_for_pulse: this SinGen is used inside PulseGen (default False)
Note: when flag_for_pulse is True, the first time step of a voiced
segment is always sin(np.pi) or cos(0)
"""
def __init__(self, samp_rate, harmonic_num=0,
sine_amp=0.1, noise_std=0.003,
voiced_threshold=0):
super(SineGen, self).__init__()
self.sine_amp = sine_amp
self.noise_std = noise_std
self.harmonic_num = harmonic_num
self.dim = self.harmonic_num + 1
self.sampling_rate = samp_rate
self.voiced_threshold = voiced_threshold
def _f02uv(self, f0):
# generate uv signal
uv = torch.ones_like(f0)
uv = uv * (f0 > self.voiced_threshold)
return uv
def _f02sine(self, f0_values, upp):
""" f0_values: (batchsize, length, dim)
where dim indicates fundamental tone and overtones
"""
rad_values = (f0_values / self.sampling_rate).fmod(1.) # %1意味着n_har的乘积无法后处理优化
rand_ini = torch.rand(1, self.dim, device=f0_values.device)
rand_ini[:, 0] = 0
rad_values[:, 0, :] += rand_ini
is_half = rad_values.dtype is not torch.float32
tmp_over_one = torch.cumsum(rad_values.double(), 1) # % 1 #####%1意味着后面的cumsum无法再优化
if is_half:
tmp_over_one = tmp_over_one.half()
else:
tmp_over_one = tmp_over_one.float()
tmp_over_one *= upp
tmp_over_one = F.interpolate(
tmp_over_one.transpose(2, 1), scale_factor=upp,
mode='linear', align_corners=True
).transpose(2, 1)
rad_values = F.interpolate(rad_values.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1)
tmp_over_one = tmp_over_one.fmod(1.)
diff = F.conv2d(
tmp_over_one.unsqueeze(1), torch.FloatTensor([[[[-1.], [1.]]]]).to(tmp_over_one.device),
stride=(1, 1), padding=0, dilation=(1, 1)
).squeeze(1) # Equivalent to torch.diff, but able to export ONNX
cumsum_shift = (diff < 0).double()
cumsum_shift = torch.cat((
torch.zeros((f0_values.size()[0], 1, self.dim), dtype=torch.double).to(f0_values.device),
cumsum_shift
), dim=1)
sines = torch.sin(torch.cumsum(rad_values.double() + cumsum_shift, dim=1) * 2 * np.pi)
if is_half:
sines = sines.half()
else:
sines = sines.float()
return sines
@torch.no_grad()
def forward(self, f0, upp):
""" sine_tensor, uv = forward(f0)
input F0: tensor(batchsize=1, length, dim=1)
f0 for unvoiced steps should be 0
output sine_tensor: tensor(batchsize=1, length, dim)
output uv: tensor(batchsize=1, length, 1)
"""
f0 = f0.unsqueeze(-1)
fn = torch.multiply(f0, torch.arange(1, self.dim + 1, device=f0.device).reshape((1, 1, -1)))
sine_waves = self._f02sine(fn, upp) * self.sine_amp
uv = (f0 > self.voiced_threshold).float()
uv = F.interpolate(uv.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1)
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
noise = noise_amp * torch.randn_like(sine_waves)
sine_waves = sine_waves * uv + noise
return sine_waves
class SourceModuleHnNSF(torch.nn.Module):
""" SourceModule for hn-nsf
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
add_noise_std=0.003, voiced_threshod=0)
sampling_rate: sampling_rate in Hz
harmonic_num: number of harmonic above F0 (default: 0)
sine_amp: amplitude of sine source signal (default: 0.1)
add_noise_std: std of additive Gaussian noise (default: 0.003)
note that amplitude of noise in unvoiced is decided
by sine_amp
voiced_threshold: threhold to set U/V given F0 (default: 0)
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
F0_sampled (batchsize, length, 1)
Sine_source (batchsize, length, 1)
noise_source (batchsize, length 1)
uv (batchsize, length, 1)
"""
def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1,
add_noise_std=0.003, voiced_threshold=0):
super(SourceModuleHnNSF, self).__init__()
self.sine_amp = sine_amp
self.noise_std = add_noise_std
# to produce sine waveforms
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
sine_amp, add_noise_std, voiced_threshold)
# to merge source harmonics into a single excitation
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
self.l_tanh = torch.nn.Tanh()
def forward(self, x, upp):
sine_wavs = self.l_sin_gen(x, upp)
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
return sine_merge
class DDSP(nn.Module):
def __init__(self,config):
super().__init__()
if config['model_args']['type']=='CombSub':
self.ddsp = CombSub(
sampling_rate=config['audio_sample_rate'],
block_size=config['hop_size'],
win_length=config['win_size'],
n_mag_harmonic=config['model_args']['n_mag_harmonic'],
n_mag_noise=config['model_args']['n_mag_noise'],
n_mels=config['audio_num_mel_bins'])
elif config['model_args']['type']=='Sins':
self.ddsp = Sins(
sampling_rate=config['audio_sample_rate'],
block_size=config['hop_size'],
win_length=config['win_size'],
n_harmonics=config['model_args']['n_harmonics'],
n_mag_noise=config['model_args']['n_mag_noise'],
n_mels=config['audio_num_mel_bins'])
def forward(self,mel,f0,infer=False):
signal, _, (s_h, s_n) = self.ddsp(mel.transpose(1,2), torch.unsqueeze(f0,dim=-1), infer=infer)
return signal.unsqueeze(1),s_h,s_n
class downblock(nn.Module):
def __init__(self, down, indim, outdim):
super().__init__()
self.c = nn.Conv1d(indim, outdim * 2, kernel_size=down * 2, stride=down, padding=down // 2)
self.act = GLU(1)
self.out = nn.Conv1d(outdim, outdim, kernel_size=3, padding=1)
self.act1 = nn.GELU()
def forward(self, x):
return self.act1(self.out(self.act(self.c(x))))
class ddsp_down(nn.Module):
def __init__(self,dims,downs:list,):
super().__init__()
dl=[]
ppl=[]
downs.reverse()
self.fistpp=nn.Conv1d(1,dims,kernel_size=1)
for idx,i in enumerate(downs[:-1]):
if idx==0:
dl.append(downblock(i,1,dims))
ppl.append(nn.Conv1d(dims,dims,kernel_size=1))
else:
dl.append(downblock(i,dims*idx,dims*(idx + 1)))
ppl.append(nn.Conv1d(dims*(idx + 1), dims, kernel_size=1))
self.downs = nn.ModuleList(dl)
self.ppls = nn.ModuleList(ppl)
def forward(self,x):
spec=[]
spec.append(self.fistpp(x))
for dl,ppl in zip(self.downs,self.ppls ):
x=dl(x)
spec.append(ppl(x))
spec.reverse()
return spec
class GLU(torch.nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, x):
out, gate = x.chunk(2, dim=self.dim)
return out * gate.sigmoid()
class Upspamper(torch.nn.Module):
def __init__(self):
super().__init__()
self.c1 = torch.nn.Conv2d(1, 8, kernel_size=1)
self.UP = torch.nn.ConvTranspose2d(4, 8, [3, 32], stride=[1, 2], padding=[1, 15])
self.Glu = GLU(1)
self.c2 = torch.nn.Conv2d(4, 8, kernel_size=3,padding=1)
self.c3 = torch.nn.Conv2d(4, 2, kernel_size=1)
def forward(self, x):
x = torch.unsqueeze(x, 1)
x=self.Glu (self.c1(x))
# x=self.net(x)
x = self.Glu (self.UP(x))
x=self.Glu(self.c2(x))+x
x =self.Glu(self.c3(x))
spectrogram = torch.squeeze(x, 1)
return spectrogram
class nsfUnivNet(torch.nn.Module):
"""Parallel WaveGAN Generator module."""
def __init__(self, h, use_weight_norm=True):
super().__init__()
# self.ddsp=DDSP(h)
self.m_source = SourceModuleHnNSF(
sampling_rate=h['audio_sample_rate'],
harmonic_num=8
)
self.upp = int(np.prod(h['hop_size']))
in_channels = h['model_args']['cond_in_channels']
out_channels = h['model_args']['out_channels']
inner_channels = h['model_args']['cg_channels']
cond_channels = h['audio_num_mel_bins']
upsample_ratios = h['model_args']['upsample_rates']
lvc_layers_each_block = h['model_args']['num_lvc_blocks']
lvc_kernel_size = h['model_args']['lvc_kernels']
kpnet_hidden_channels = h['model_args']['lvc_hidden_channels']
kpnet_conv_size = h['model_args']['lvc_conv_size']
dropout = h['model_args']['dropout']
# upsample_ratios:list
self.ddspd = ddsp_down(dims=inner_channels,downs=upsample_ratios.copy(),)
upmel=h['model_args'].get('upmel')
self.upblocke=torch.nn.Sequential(*[Upspamper() for i in range(upmel//2)]) if upmel is not None or upmel==1 else torch.nn.Identity()
self.in_channels = in_channels
self.out_channels = out_channels
self.cond_channels = cond_channels
self.lvc_block_nums = len(upsample_ratios)
# define first convolution
self.first_conv = torch.nn.Conv1d(in_channels, inner_channels,
kernel_size=7, padding=(7 - 1) // 2,
dilation=1, bias=True)
# define residual blocks
self.lvc_blocks = torch.nn.ModuleList()
cond_hop_length = 1
for n in range(self.lvc_block_nums):
cond_hop_length = cond_hop_length * upsample_ratios[n]
lvcb = LVCBlock(
in_channels=inner_channels,
cond_channels=cond_channels,
upsample_ratio=upsample_ratios[n],
conv_layers=lvc_layers_each_block,
conv_kernel_size=lvc_kernel_size,
cond_hop_length=cond_hop_length,
kpnet_hidden_channels=kpnet_hidden_channels,
kpnet_conv_size=kpnet_conv_size,
kpnet_dropout=dropout,
)
self.lvc_blocks += [lvcb]
# define output layers
self.last_conv_layers = torch.nn.ModuleList([
torch.nn.Conv1d(inner_channels, out_channels, kernel_size=7, padding=(7 - 1) // 2,
dilation=1, bias=True),
])
# apply weight norm
if use_weight_norm:
self.apply_weight_norm()
def forward(self, x, c,f0,infer=False):
"""Calculate forward propagation.
Args:
x (Tensor): Input noise signal (B, 1, T).
c (Tensor): Local conditioning auxiliary features (B, C ,T').
Returns:
Tensor: Output tensor (B, out_channels, T)
"""
pass
# ddspwav,s_h,s_n=self.ddsp(mel=c,f0=f0,infer=infer)
har_source = self.m_source(f0, self.upp).transpose(1, 2)
specl=self.ddspd(har_source)
x = self.first_conv(x)
c=self.upblocke(c)
for n in range(self.lvc_block_nums):
x = self.lvc_blocks[n](x, c,specl[n])
# apply final layers
for f in self.last_conv_layers:
x = F.leaky_relu(x, LRELU_SLOPE)
x = f(x)
x = torch.tanh(x)
return x,har_source
def remove_weight_norm(self):
"""Remove weight normalization module from all of the layers."""
def _remove_weight_norm(m):
try:
logging.debug(f"Weight norm is removed from {m}.")
torch.nn.utils.remove_weight_norm(m)
except ValueError: # this module didn't have weight norm
return
self.apply(_remove_weight_norm)
def apply_weight_norm(self):
"""Apply weight normalization module from all of the layers."""
def _apply_weight_norm(m):
if isinstance(m, torch.nn.Conv1d) or isinstance(m, torch.nn.Conv2d):
torch.nn.utils.weight_norm(m)
logging.debug(f"Weight norm is applied to {m}.")
self.apply(_apply_weight_norm)
@staticmethod
def _get_receptive_field_size(layers, stacks, kernel_size,
dilation=lambda x: 2 ** x):
assert layers % stacks == 0
layers_per_cycle = layers // stacks
dilations = [dilation(i % layers_per_cycle) for i in range(layers)]
return (kernel_size - 1) * sum(dilations) + 1
@property
def receptive_field_size(self):
"""Return receptive field size."""
return self._get_receptive_field_size(self.layers, self.stacks, self.kernel_size)
def inference(self, c=None, x=None):
"""Perform inference.
Args:
c (Union[Tensor, ndarray]): Local conditioning auxiliary features (T' ,C).
x (Union[Tensor, ndarray]): Input noise signal (T, 1).
Returns:
Tensor: Output tensor (T, out_channels)
"""
if x is not None:
if not isinstance(x, torch.Tensor):
x = torch.tensor(x, dtype=torch.float).to(next(self.parameters()).device)
x = x.transpose(1, 0).unsqueeze(0)
else:
assert c is not None
x = torch.randn(1, 1, len(c) * self.upsample_factor).to(next(self.parameters()).device)
if c is not None:
if not isinstance(c, torch.Tensor):
c = torch.tensor(c, dtype=torch.float).to(next(self.parameters()).device)
c = c.transpose(1, 0).unsqueeze(0)
c = torch.nn.ReplicationPad1d(self.aux_context_window)(c)
return self.forward(x, c).squeeze(0).transpose(1, 0)
|