File size: 16,613 Bytes
af7cad8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: detect-femicide-news-xlmr-nl-fft-freeze2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# detect-femicide-news-xlmr-nl-fft-freeze2
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4112
- Accuracy: 0.8571
- Precision Neg: 0.85
- Precision Pos: 0.875
- Recall Neg: 0.9444
- Recall Pos: 0.7
- F1 Score Neg: 0.8947
- F1 Score Pos: 0.7778
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 24
- eval_batch_size: 8
- seed: 1996
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Neg | Precision Pos | Recall Neg | Recall Pos | F1 Score Neg | F1 Score Pos |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:-------------:|:----------:|:----------:|:------------:|:------------:|
| 1.2929 | 1.0 | 23 | 1.0782 | 0.75 | 0.7391 | 0.8 | 0.9444 | 0.4 | 0.8293 | 0.5333 |
| 1.1345 | 2.0 | 46 | 0.8942 | 0.8214 | 0.8095 | 0.8571 | 0.9444 | 0.6 | 0.8718 | 0.7059 |
| 0.9799 | 3.0 | 69 | 0.7418 | 0.8214 | 0.8095 | 0.8571 | 0.9444 | 0.6 | 0.8718 | 0.7059 |
| 0.7871 | 4.0 | 92 | 0.5905 | 0.8214 | 0.8095 | 0.8571 | 0.9444 | 0.6 | 0.8718 | 0.7059 |
| 0.6852 | 5.0 | 115 | 0.4981 | 0.8214 | 0.8095 | 0.8571 | 0.9444 | 0.6 | 0.8718 | 0.7059 |
| 0.5988 | 6.0 | 138 | 0.4501 | 0.8214 | 0.8095 | 0.8571 | 0.9444 | 0.6 | 0.8718 | 0.7059 |
| 0.5976 | 7.0 | 161 | 0.4441 | 0.8214 | 0.8095 | 0.8571 | 0.9444 | 0.6 | 0.8718 | 0.7059 |
| 0.5877 | 8.0 | 184 | 0.4501 | 0.8214 | 0.8095 | 0.8571 | 0.9444 | 0.6 | 0.8718 | 0.7059 |
| 0.5621 | 9.0 | 207 | 0.4503 | 0.8214 | 0.8095 | 0.8571 | 0.9444 | 0.6 | 0.8718 | 0.7059 |
| 0.5658 | 10.0 | 230 | 0.4514 | 0.8214 | 0.8095 | 0.8571 | 0.9444 | 0.6 | 0.8718 | 0.7059 |
| 0.5648 | 11.0 | 253 | 0.4505 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.559 | 12.0 | 276 | 0.4499 | 0.8214 | 0.8095 | 0.8571 | 0.9444 | 0.6 | 0.8718 | 0.7059 |
| 0.5668 | 13.0 | 299 | 0.4449 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5542 | 14.0 | 322 | 0.4448 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5496 | 15.0 | 345 | 0.4406 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.555 | 16.0 | 368 | 0.4392 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5479 | 17.0 | 391 | 0.4389 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5487 | 18.0 | 414 | 0.4345 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5529 | 19.0 | 437 | 0.4312 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5439 | 20.0 | 460 | 0.4314 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5444 | 21.0 | 483 | 0.4317 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5322 | 22.0 | 506 | 0.4299 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5314 | 23.0 | 529 | 0.4265 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5286 | 24.0 | 552 | 0.4245 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5395 | 25.0 | 575 | 0.4256 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5419 | 26.0 | 598 | 0.4253 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.55 | 27.0 | 621 | 0.4264 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5525 | 28.0 | 644 | 0.4261 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5465 | 29.0 | 667 | 0.4251 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5304 | 30.0 | 690 | 0.4277 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.541 | 31.0 | 713 | 0.4268 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5344 | 32.0 | 736 | 0.4262 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5316 | 33.0 | 759 | 0.4219 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5415 | 34.0 | 782 | 0.4244 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5419 | 35.0 | 805 | 0.4221 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5284 | 36.0 | 828 | 0.4206 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5472 | 37.0 | 851 | 0.4193 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5172 | 38.0 | 874 | 0.4185 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.522 | 39.0 | 897 | 0.4168 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5261 | 40.0 | 920 | 0.4172 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5246 | 41.0 | 943 | 0.4167 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5249 | 42.0 | 966 | 0.4164 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5229 | 43.0 | 989 | 0.4155 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5144 | 44.0 | 1012 | 0.4155 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.527 | 45.0 | 1035 | 0.4181 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.525 | 46.0 | 1058 | 0.4184 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5258 | 47.0 | 1081 | 0.4167 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5297 | 48.0 | 1104 | 0.4156 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5299 | 49.0 | 1127 | 0.4167 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5273 | 50.0 | 1150 | 0.4167 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5296 | 51.0 | 1173 | 0.4170 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5094 | 52.0 | 1196 | 0.4168 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5171 | 53.0 | 1219 | 0.4167 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5179 | 54.0 | 1242 | 0.4161 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5144 | 55.0 | 1265 | 0.4158 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5452 | 56.0 | 1288 | 0.4141 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5193 | 57.0 | 1311 | 0.4155 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5288 | 58.0 | 1334 | 0.4146 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5343 | 59.0 | 1357 | 0.4139 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5224 | 60.0 | 1380 | 0.4132 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5177 | 61.0 | 1403 | 0.4137 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5299 | 62.0 | 1426 | 0.4146 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5293 | 63.0 | 1449 | 0.4139 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5183 | 64.0 | 1472 | 0.4131 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5124 | 65.0 | 1495 | 0.4132 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5102 | 66.0 | 1518 | 0.4131 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.523 | 67.0 | 1541 | 0.4137 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5142 | 68.0 | 1564 | 0.4135 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5122 | 69.0 | 1587 | 0.4131 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5198 | 70.0 | 1610 | 0.4132 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5195 | 71.0 | 1633 | 0.4133 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5228 | 72.0 | 1656 | 0.4131 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5065 | 73.0 | 1679 | 0.4129 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5174 | 74.0 | 1702 | 0.4118 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5189 | 75.0 | 1725 | 0.4119 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5243 | 76.0 | 1748 | 0.4119 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5102 | 77.0 | 1771 | 0.4128 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5318 | 78.0 | 1794 | 0.4130 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5214 | 79.0 | 1817 | 0.4128 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5163 | 80.0 | 1840 | 0.4133 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5235 | 81.0 | 1863 | 0.4128 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5393 | 82.0 | 1886 | 0.4131 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5284 | 83.0 | 1909 | 0.4128 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5242 | 84.0 | 1932 | 0.4122 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.505 | 85.0 | 1955 | 0.4120 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5211 | 86.0 | 1978 | 0.4120 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5367 | 87.0 | 2001 | 0.4122 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5068 | 88.0 | 2024 | 0.4122 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.51 | 89.0 | 2047 | 0.4119 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5302 | 90.0 | 2070 | 0.4118 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5208 | 91.0 | 2093 | 0.4119 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5199 | 92.0 | 2116 | 0.4119 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5142 | 93.0 | 2139 | 0.4116 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5225 | 94.0 | 2162 | 0.4116 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5123 | 95.0 | 2185 | 0.4116 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5123 | 96.0 | 2208 | 0.4113 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.4929 | 97.0 | 2231 | 0.4114 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5067 | 98.0 | 2254 | 0.4112 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5254 | 99.0 | 2277 | 0.4112 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
| 0.5131 | 100.0 | 2300 | 0.4112 | 0.8571 | 0.85 | 0.875 | 0.9444 | 0.7 | 0.8947 | 0.7778 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.2+cu113
- Datasets 1.18.3
- Tokenizers 0.11.0
|