File size: 16,613 Bytes
af7cad8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: detect-femicide-news-xlmr-nl-fft-freeze2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# detect-femicide-news-xlmr-nl-fft-freeze2

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4112
- Accuracy: 0.8571
- Precision Neg: 0.85
- Precision Pos: 0.875
- Recall Neg: 0.9444
- Recall Pos: 0.7
- F1 Score Neg: 0.8947
- F1 Score Pos: 0.7778

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 24
- eval_batch_size: 8
- seed: 1996
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Neg | Precision Pos | Recall Neg | Recall Pos | F1 Score Neg | F1 Score Pos |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:-------------:|:----------:|:----------:|:------------:|:------------:|
| 1.2929        | 1.0   | 23   | 1.0782          | 0.75     | 0.7391        | 0.8           | 0.9444     | 0.4        | 0.8293       | 0.5333       |
| 1.1345        | 2.0   | 46   | 0.8942          | 0.8214   | 0.8095        | 0.8571        | 0.9444     | 0.6        | 0.8718       | 0.7059       |
| 0.9799        | 3.0   | 69   | 0.7418          | 0.8214   | 0.8095        | 0.8571        | 0.9444     | 0.6        | 0.8718       | 0.7059       |
| 0.7871        | 4.0   | 92   | 0.5905          | 0.8214   | 0.8095        | 0.8571        | 0.9444     | 0.6        | 0.8718       | 0.7059       |
| 0.6852        | 5.0   | 115  | 0.4981          | 0.8214   | 0.8095        | 0.8571        | 0.9444     | 0.6        | 0.8718       | 0.7059       |
| 0.5988        | 6.0   | 138  | 0.4501          | 0.8214   | 0.8095        | 0.8571        | 0.9444     | 0.6        | 0.8718       | 0.7059       |
| 0.5976        | 7.0   | 161  | 0.4441          | 0.8214   | 0.8095        | 0.8571        | 0.9444     | 0.6        | 0.8718       | 0.7059       |
| 0.5877        | 8.0   | 184  | 0.4501          | 0.8214   | 0.8095        | 0.8571        | 0.9444     | 0.6        | 0.8718       | 0.7059       |
| 0.5621        | 9.0   | 207  | 0.4503          | 0.8214   | 0.8095        | 0.8571        | 0.9444     | 0.6        | 0.8718       | 0.7059       |
| 0.5658        | 10.0  | 230  | 0.4514          | 0.8214   | 0.8095        | 0.8571        | 0.9444     | 0.6        | 0.8718       | 0.7059       |
| 0.5648        | 11.0  | 253  | 0.4505          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.559         | 12.0  | 276  | 0.4499          | 0.8214   | 0.8095        | 0.8571        | 0.9444     | 0.6        | 0.8718       | 0.7059       |
| 0.5668        | 13.0  | 299  | 0.4449          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5542        | 14.0  | 322  | 0.4448          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5496        | 15.0  | 345  | 0.4406          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.555         | 16.0  | 368  | 0.4392          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5479        | 17.0  | 391  | 0.4389          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5487        | 18.0  | 414  | 0.4345          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5529        | 19.0  | 437  | 0.4312          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5439        | 20.0  | 460  | 0.4314          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5444        | 21.0  | 483  | 0.4317          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5322        | 22.0  | 506  | 0.4299          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5314        | 23.0  | 529  | 0.4265          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5286        | 24.0  | 552  | 0.4245          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5395        | 25.0  | 575  | 0.4256          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5419        | 26.0  | 598  | 0.4253          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.55          | 27.0  | 621  | 0.4264          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5525        | 28.0  | 644  | 0.4261          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5465        | 29.0  | 667  | 0.4251          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5304        | 30.0  | 690  | 0.4277          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.541         | 31.0  | 713  | 0.4268          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5344        | 32.0  | 736  | 0.4262          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5316        | 33.0  | 759  | 0.4219          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5415        | 34.0  | 782  | 0.4244          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5419        | 35.0  | 805  | 0.4221          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5284        | 36.0  | 828  | 0.4206          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5472        | 37.0  | 851  | 0.4193          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5172        | 38.0  | 874  | 0.4185          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.522         | 39.0  | 897  | 0.4168          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5261        | 40.0  | 920  | 0.4172          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5246        | 41.0  | 943  | 0.4167          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5249        | 42.0  | 966  | 0.4164          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5229        | 43.0  | 989  | 0.4155          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5144        | 44.0  | 1012 | 0.4155          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.527         | 45.0  | 1035 | 0.4181          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.525         | 46.0  | 1058 | 0.4184          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5258        | 47.0  | 1081 | 0.4167          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5297        | 48.0  | 1104 | 0.4156          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5299        | 49.0  | 1127 | 0.4167          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5273        | 50.0  | 1150 | 0.4167          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5296        | 51.0  | 1173 | 0.4170          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5094        | 52.0  | 1196 | 0.4168          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5171        | 53.0  | 1219 | 0.4167          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5179        | 54.0  | 1242 | 0.4161          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5144        | 55.0  | 1265 | 0.4158          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5452        | 56.0  | 1288 | 0.4141          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5193        | 57.0  | 1311 | 0.4155          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5288        | 58.0  | 1334 | 0.4146          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5343        | 59.0  | 1357 | 0.4139          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5224        | 60.0  | 1380 | 0.4132          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5177        | 61.0  | 1403 | 0.4137          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5299        | 62.0  | 1426 | 0.4146          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5293        | 63.0  | 1449 | 0.4139          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5183        | 64.0  | 1472 | 0.4131          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5124        | 65.0  | 1495 | 0.4132          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5102        | 66.0  | 1518 | 0.4131          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.523         | 67.0  | 1541 | 0.4137          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5142        | 68.0  | 1564 | 0.4135          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5122        | 69.0  | 1587 | 0.4131          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5198        | 70.0  | 1610 | 0.4132          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5195        | 71.0  | 1633 | 0.4133          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5228        | 72.0  | 1656 | 0.4131          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5065        | 73.0  | 1679 | 0.4129          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5174        | 74.0  | 1702 | 0.4118          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5189        | 75.0  | 1725 | 0.4119          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5243        | 76.0  | 1748 | 0.4119          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5102        | 77.0  | 1771 | 0.4128          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5318        | 78.0  | 1794 | 0.4130          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5214        | 79.0  | 1817 | 0.4128          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5163        | 80.0  | 1840 | 0.4133          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5235        | 81.0  | 1863 | 0.4128          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5393        | 82.0  | 1886 | 0.4131          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5284        | 83.0  | 1909 | 0.4128          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5242        | 84.0  | 1932 | 0.4122          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.505         | 85.0  | 1955 | 0.4120          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5211        | 86.0  | 1978 | 0.4120          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5367        | 87.0  | 2001 | 0.4122          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5068        | 88.0  | 2024 | 0.4122          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.51          | 89.0  | 2047 | 0.4119          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5302        | 90.0  | 2070 | 0.4118          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5208        | 91.0  | 2093 | 0.4119          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5199        | 92.0  | 2116 | 0.4119          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5142        | 93.0  | 2139 | 0.4116          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5225        | 94.0  | 2162 | 0.4116          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5123        | 95.0  | 2185 | 0.4116          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5123        | 96.0  | 2208 | 0.4113          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.4929        | 97.0  | 2231 | 0.4114          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5067        | 98.0  | 2254 | 0.4112          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5254        | 99.0  | 2277 | 0.4112          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |
| 0.5131        | 100.0 | 2300 | 0.4112          | 0.8571   | 0.85          | 0.875         | 0.9444     | 0.7        | 0.8947       | 0.7778       |


### Framework versions

- Transformers 4.16.2
- Pytorch 1.10.2+cu113
- Datasets 1.18.3
- Tokenizers 0.11.0