|
This model corresponds to **tapas_masklm_small_reset** of the [original repository](https://github.com/google-research/tapas). |
|
|
|
Here's how you can use it: |
|
|
|
```python |
|
from transformers import TapasTokenizer, TapasForMaskedLM |
|
import pandas as pd |
|
import torch |
|
|
|
tokenizer = TapasTokenizer.from_pretrained("google/tapas-small-masklm") |
|
model = TapasForMaskedLM.from_pretrained("google/tapas-small-masklm") |
|
|
|
data = {'Actors': ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], |
|
'Age': ["56", "45", "59"], |
|
'Number of movies': ["87", "53", "69"] |
|
} |
|
table = pd.DataFrame.from_dict(data) |
|
query = "How many movies has Leonardo [MASK] Caprio played in?" |
|
|
|
# prepare inputs |
|
inputs = tokenizer(table=table, queries=query, padding="max_length", return_tensors="pt") |
|
|
|
# forward pass |
|
outputs = model(**inputs) |
|
|
|
# return top 5 values and predictions |
|
masked_index = torch.nonzero(inputs.input_ids.squeeze() == tokenizer.mask_token_id, as_tuple=False) |
|
logits = outputs.logits[0, masked_index.item(), :] |
|
probs = logits.softmax(dim=0) |
|
values, predictions = probs.topk(5) |
|
|
|
for value, pred in zip(values, predictions): |
|
print(f"{tokenizer.decode([pred])} with confidence {value}") |
|
``` |