File size: 59,111 Bytes
994cc5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "s_qNSzzyaCbD"
},
"source": [
"##### Copyright 2019 The TensorFlow Authors."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"cellView": "form",
"execution": {
"iopub.execute_input": "2023-08-11T11:07:36.887650Z",
"iopub.status.busy": "2023-08-11T11:07:36.886995Z",
"iopub.status.idle": "2023-08-11T11:07:36.891012Z",
"shell.execute_reply": "2023-08-11T11:07:36.890336Z"
},
"id": "jmjh290raIky"
},
"outputs": [],
"source": [
"#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n",
"# you may not use this file except in compliance with the License.\n",
"# You may obtain a copy of the License at\n",
"#\n",
"# https://www.apache.org/licenses/LICENSE-2.0\n",
"#\n",
"# Unless required by applicable law or agreed to in writing, software\n",
"# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
"# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
"# See the License for the specific language governing permissions and\n",
"# limitations under the License."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "AOpGoE2T-YXS"
},
"source": [
"<table class=\"tfo-notebook-buttons\" align=\"left\">\n",
" <td>\n",
" <a target=\"_blank\" href=\"https://www.tensorflow.org/text/guide/subwords_tokenizer\"><img src=\"https://www.tensorflow.org/images/tf_logo_32px.png\" />View on TensorFlow.org</a>\n",
" </td>\n",
" <td>\n",
" <a target=\"_blank\" href=\"https://colab.research.google.com/github/tensorflow/text/blob/master/docs/guide/subwords_tokenizer.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n",
" </td>\n",
" <td>\n",
" <a target=\"_blank\" href=\"https://github.com/tensorflow/text/blob/master/docs/guide/subwords_tokenizer.ipynb\"><img src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" />View source on GitHub</a>\n",
" </td>\n",
" <td>\n",
" <a href=\"https://storage.googleapis.com/tensorflow_docs/text/docs/guide/subwords_tokenizer.ipynb\"><img src=\"https://www.tensorflow.org/images/download_logo_32px.png\" />Download notebook</a>\n",
" </td>\n",
"</table>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ES8iTKcdPCLt"
},
"source": [
"# Subword tokenizers\n",
"\n",
"This tutorial demonstrates how to generate a subword vocabulary from a dataset, and use it to build a `text.BertTokenizer` from the vocabulary.\n",
"\n",
"The main advantage of a subword tokenizer is that it interpolates between word-based and character-based tokenization. Common words get a slot in the vocabulary, but the tokenizer can fall back to word pieces and individual characters for unknown words.\n",
"\n",
"Objective: At the end of this tutorial you'll have built a complete end-to-end wordpiece tokenizer and detokenizer from scratch, and saved it as a `saved_model` that you can load and use in this [translation tutorial](https://tensorflow.org/text/tutorials/transformer)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "BHfrtG1YPJdR"
},
"source": [
"## Overview"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "iIMuBnQO6ZoV"
},
"source": [
"The `tensorflow_text` package includes TensorFlow implementations of many common tokenizers. This includes three subword-style tokenizers:\n",
"\n",
"* `text.BertTokenizer` - The `BertTokenizer` class is a higher level interface. It includes BERT's token splitting algorithm and a `WordPieceTokenizer`. It takes **sentences** as input and returns **token-IDs**.\n",
"* `text.WordpieceTokenizer` - The `WordPieceTokenizer` class is a lower level interface. It only implements the [WordPiece algorithm](#applying_wordpiece). You must standardize and split the text into words before calling it. It takes **words** as input and returns token-IDs.\n",
"* `text.SentencepieceTokenizer` - The `SentencepieceTokenizer` requires a more complex setup. Its initializer requires a pre-trained sentencepiece model. See the [google/sentencepiece repository](https://github.com/google/sentencepiece#train-sentencepiece-model) for instructions on how to build one of these models. It can accept **sentences** as input when tokenizing.\n",
"\n",
"This tutorial builds a Wordpiece vocabulary in a top down manner, starting from existing words. This process doesn't work for Japanese, Chinese, or Korean since these languages don't have clear multi-character units. To tokenize these languages consider using `text.SentencepieceTokenizer`, `text.UnicodeCharTokenizer` or [this approach](https://tfhub.dev/google/zh_segmentation/1). "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "swymtxpl7W7w"
},
"source": [
"## Setup"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:07:36.894748Z",
"iopub.status.busy": "2023-08-11T11:07:36.894313Z",
"iopub.status.idle": "2023-08-11T11:08:05.647249Z",
"shell.execute_reply": "2023-08-11T11:08:05.646422Z"
},
"id": "rJTYbk1E9QOk"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\r\n",
"tensorflow-datasets 4.9.2 requires protobuf>=3.20, but you have protobuf 3.19.6 which is incompatible.\r\n",
"tensorflow-metadata 1.14.0 requires protobuf<4.21,>=3.20.3, but you have protobuf 3.19.6 which is incompatible.\u001b[0m\u001b[31m\r\n",
"\u001b[0m"
]
}
],
"source": [
"!pip install -q -U \"tensorflow-text==2.11.*\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:08:05.651342Z",
"iopub.status.busy": "2023-08-11T11:08:05.651073Z",
"iopub.status.idle": "2023-08-11T11:08:08.314047Z",
"shell.execute_reply": "2023-08-11T11:08:08.313134Z"
},
"id": "XFG0NDRu5mYQ"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\r\n",
"tensorflow 2.11.1 requires protobuf<3.20,>=3.9.2, but you have protobuf 3.20.3 which is incompatible.\u001b[0m\u001b[31m\r\n",
"\u001b[0m"
]
}
],
"source": [
"!pip install -q tensorflow_datasets"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:08:08.317980Z",
"iopub.status.busy": "2023-08-11T11:08:08.317735Z",
"iopub.status.idle": "2023-08-11T11:08:11.244419Z",
"shell.execute_reply": "2023-08-11T11:08:11.243662Z"
},
"id": "JjJJyJTZYebt"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-08-11 11:08:10.432347: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory\n",
"2023-08-11 11:08:10.432451: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory\n",
"2023-08-11 11:08:10.432460: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n"
]
}
],
"source": [
"import collections\n",
"import os\n",
"import pathlib\n",
"import re\n",
"import string\n",
"import sys\n",
"import tempfile\n",
"import time\n",
"\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"import tensorflow_datasets as tfds\n",
"import tensorflow_text as text\n",
"import tensorflow as tf"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:08:11.248812Z",
"iopub.status.busy": "2023-08-11T11:08:11.248023Z",
"iopub.status.idle": "2023-08-11T11:08:11.251713Z",
"shell.execute_reply": "2023-08-11T11:08:11.251084Z"
},
"id": "QZi9RstHxO_Z"
},
"outputs": [],
"source": [
"tf.get_logger().setLevel('ERROR')\n",
"pwd = pathlib.Path.cwd()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "wzJbGA5N5mXr"
},
"source": [
"## Download the dataset"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "kC9TeTd47j8p"
},
"source": [
"Fetch the Portuguese/English translation dataset from [tfds](https://tensorflow.org/datasets):"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:08:11.255399Z",
"iopub.status.busy": "2023-08-11T11:08:11.254796Z",
"iopub.status.idle": "2023-08-11T11:08:16.876922Z",
"shell.execute_reply": "2023-08-11T11:08:16.876263Z"
},
"id": "qDaAOTKHNy8e"
},
"outputs": [],
"source": [
"examples, metadata = tfds.load('ted_hrlr_translate/pt_to_en', with_info=True,\n",
" as_supervised=True)\n",
"train_examples, val_examples = examples['train'], examples['validation'] "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5GHc3O2W8Hgg"
},
"source": [
"This dataset produces Portuguese/English sentence pairs:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:08:16.880845Z",
"iopub.status.busy": "2023-08-11T11:08:16.880611Z",
"iopub.status.idle": "2023-08-11T11:08:17.469768Z",
"shell.execute_reply": "2023-08-11T11:08:17.469027Z"
},
"id": "-_ezZT8w8GqD"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Portuguese: e quando melhoramos a procura , tiramos a única vantagem da impressão , que é a serendipidade .\n",
"English: and when you improve searchability , you actually take away the one advantage of print , which is serendipity .\n"
]
}
],
"source": [
"for pt, en in train_examples.take(1):\n",
" print(\"Portuguese: \", pt.numpy().decode('utf-8'))\n",
" print(\"English: \", en.numpy().decode('utf-8'))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "nNGwm45vKttj"
},
"source": [
"Note a few things about the example sentences above:\n",
"* They're lower case.\n",
"* There are spaces around the punctuation.\n",
"* It's not clear if or what unicode normalization is being used."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:08:17.473707Z",
"iopub.status.busy": "2023-08-11T11:08:17.473026Z",
"iopub.status.idle": "2023-08-11T11:08:17.505169Z",
"shell.execute_reply": "2023-08-11T11:08:17.504577Z"
},
"id": "Pm5Eah5F6B1I"
},
"outputs": [],
"source": [
"train_en = train_examples.map(lambda pt, en: en)\n",
"train_pt = train_examples.map(lambda pt, en: pt)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "VCD57yALsF0D"
},
"source": [
"## Generate the vocabulary\n",
"\n",
"This section generates a wordpiece vocabulary from a dataset. If you already have a vocabulary file and just want to see how to build a `text.BertTokenizer` or `text.WordpieceTokenizer` tokenizer with it then you can skip ahead to the [Build the tokenizer](#build_the_tokenizer) section."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "v4CX7_KlO8lX"
},
"source": [
"Note: The vocabulary generation code used in this tutorial is optimized for **simplicity**. If you need a more scalable solution consider using the Apache Beam implementation available in [tools/wordpiece_vocab/generate_vocab.py](https://github.com/tensorflow/text/blob/master/tensorflow_text/tools/wordpiece_vocab/generate_vocab.py)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "R74W3QabgWmX"
},
"source": [
"The vocabulary generation code is included in the `tensorflow_text` pip package. It is not imported by default , you need to manually import it:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:08:17.508754Z",
"iopub.status.busy": "2023-08-11T11:08:17.508517Z",
"iopub.status.idle": "2023-08-11T11:08:17.513174Z",
"shell.execute_reply": "2023-08-11T11:08:17.512549Z"
},
"id": "iqX1fYdpnLS2"
},
"outputs": [],
"source": [
"from tensorflow_text.tools.wordpiece_vocab import bert_vocab_from_dataset as bert_vocab"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "HaWSnj8xFgI7"
},
"source": [
"The `bert_vocab.bert_vocab_from_dataset` function will generate the vocabulary. \n",
"\n",
"There are many arguments you can set to adjust its behavior. For this tutorial, you'll mostly use the defaults. If you want to learn more about the options, first read about [the algorithm](#algorithm), and then have a look at [the code](https://github.com/tensorflow/text/blob/master/tensorflow_text/tools/wordpiece_vocab/bert_vocab_from_dataset.py).\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6gTty2Wh-dHm"
},
"source": [
"This takes about 2 minutes."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:08:17.516747Z",
"iopub.status.busy": "2023-08-11T11:08:17.516292Z",
"iopub.status.idle": "2023-08-11T11:08:17.519968Z",
"shell.execute_reply": "2023-08-11T11:08:17.519362Z"
},
"id": "FwFzYjBy-h8W"
},
"outputs": [],
"source": [
"bert_tokenizer_params=dict(lower_case=True)\n",
"reserved_tokens=[\"[PAD]\", \"[UNK]\", \"[START]\", \"[END]\"]\n",
"\n",
"bert_vocab_args = dict(\n",
" # The target vocabulary size\n",
" vocab_size = 8000,\n",
" # Reserved tokens that must be included in the vocabulary\n",
" reserved_tokens=reserved_tokens,\n",
" # Arguments for `text.BertTokenizer`\n",
" bert_tokenizer_params=bert_tokenizer_params,\n",
" # Arguments for `wordpiece_vocab.wordpiece_tokenizer_learner_lib.learn`\n",
" learn_params={},\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:08:17.523306Z",
"iopub.status.busy": "2023-08-11T11:08:17.522789Z",
"iopub.status.idle": "2023-08-11T11:09:38.100721Z",
"shell.execute_reply": "2023-08-11T11:09:38.099954Z"
},
"id": "PMN6Lli_3sJW"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 1min 24s, sys: 2.83 s, total: 1min 27s\n",
"Wall time: 1min 20s\n"
]
}
],
"source": [
"%%time\n",
"pt_vocab = bert_vocab.bert_vocab_from_dataset(\n",
" train_pt.batch(1000).prefetch(2),\n",
" **bert_vocab_args\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "3Cl4d2O34gkH"
},
"source": [
"Here are some slices of the resulting vocabulary."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:09:38.104184Z",
"iopub.status.busy": "2023-08-11T11:09:38.103928Z",
"iopub.status.idle": "2023-08-11T11:09:38.108100Z",
"shell.execute_reply": "2023-08-11T11:09:38.107466Z"
},
"id": "mfaPmX54FvhW"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['[PAD]', '[UNK]', '[START]', '[END]', '!', '#', '$', '%', '&', \"'\"]\n",
"['no', 'por', 'mais', 'na', 'eu', 'esta', 'muito', 'isso', 'isto', 'sao']\n",
"['90', 'desse', 'efeito', 'malaria', 'normalmente', 'palestra', 'recentemente', '##nca', 'bons', 'chave']\n",
"['##–', '##—', '##‘', '##’', '##“', '##”', '##⁄', '##€', '##♪', '##♫']\n"
]
}
],
"source": [
"print(pt_vocab[:10])\n",
"print(pt_vocab[100:110])\n",
"print(pt_vocab[1000:1010])\n",
"print(pt_vocab[-10:])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "owkP3wbYVQv0"
},
"source": [
"Write a vocabulary file:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:09:38.111553Z",
"iopub.status.busy": "2023-08-11T11:09:38.111046Z",
"iopub.status.idle": "2023-08-11T11:09:38.114779Z",
"shell.execute_reply": "2023-08-11T11:09:38.114205Z"
},
"id": "VY6v1ThkKDyZ"
},
"outputs": [],
"source": [
"def write_vocab_file(filepath, vocab):\n",
" with open(filepath, 'w') as f:\n",
" for token in vocab:\n",
" print(token, file=f)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:09:38.117753Z",
"iopub.status.busy": "2023-08-11T11:09:38.117326Z",
"iopub.status.idle": "2023-08-11T11:09:38.124338Z",
"shell.execute_reply": "2023-08-11T11:09:38.123750Z"
},
"id": "X_TR5U1xWvAV"
},
"outputs": [],
"source": [
"write_vocab_file('pt_vocab.txt', pt_vocab)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0ag3qcx54nii"
},
"source": [
"Use that function to generate a vocabulary from the english data:"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:09:38.127459Z",
"iopub.status.busy": "2023-08-11T11:09:38.126876Z",
"iopub.status.idle": "2023-08-11T11:10:33.360225Z",
"shell.execute_reply": "2023-08-11T11:10:33.359413Z"
},
"id": "R3cMumvHWWtl"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 59.5 s, sys: 2.2 s, total: 1min 1s\n",
"Wall time: 55.2 s\n"
]
}
],
"source": [
"%%time\n",
"en_vocab = bert_vocab.bert_vocab_from_dataset(\n",
" train_en.batch(1000).prefetch(2),\n",
" **bert_vocab_args\n",
")\n"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:10:33.363881Z",
"iopub.status.busy": "2023-08-11T11:10:33.363324Z",
"iopub.status.idle": "2023-08-11T11:10:33.367548Z",
"shell.execute_reply": "2023-08-11T11:10:33.366890Z"
},
"id": "NxOpzMd8ol5B"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['[PAD]', '[UNK]', '[START]', '[END]', '!', '#', '$', '%', '&', \"'\"]\n",
"['as', 'all', 'at', 'one', 'people', 're', 'like', 'if', 'our', 'from']\n",
"['choose', 'consider', 'extraordinary', 'focus', 'generation', 'killed', 'patterns', 'putting', 'scientific', 'wait']\n",
"['##_', '##`', '##ย', '##ร', '##อ', '##–', '##—', '##’', '##♪', '##♫']\n"
]
}
],
"source": [
"print(en_vocab[:10])\n",
"print(en_vocab[100:110])\n",
"print(en_vocab[1000:1010])\n",
"print(en_vocab[-10:])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ck3LG_f34wCs"
},
"source": [
"Here are the two vocabulary files:"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:10:33.370842Z",
"iopub.status.busy": "2023-08-11T11:10:33.370307Z",
"iopub.status.idle": "2023-08-11T11:10:33.376675Z",
"shell.execute_reply": "2023-08-11T11:10:33.376105Z"
},
"id": "xfc2jxPznM6H"
},
"outputs": [],
"source": [
"write_vocab_file('en_vocab.txt', en_vocab)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:10:33.379857Z",
"iopub.status.busy": "2023-08-11T11:10:33.379374Z",
"iopub.status.idle": "2023-08-11T11:10:33.575341Z",
"shell.execute_reply": "2023-08-11T11:10:33.574189Z"
},
"id": "djehfEL6Zn-I"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"en_vocab.txt pt_vocab.txt\r\n"
]
}
],
"source": [
"!ls *.txt"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Vb5ddYLTBJhk"
},
"source": [
"## Build the tokenizer\n",
"<a id=\"build_the_tokenizer\"></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_qgp5gvR-2tQ"
},
"source": [
"The `text.BertTokenizer` can be initialized by passing the vocabulary file's path as the first argument (see the section on [tf.lookup](#tf.lookup) for other options): "
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:10:33.579533Z",
"iopub.status.busy": "2023-08-11T11:10:33.579240Z",
"iopub.status.idle": "2023-08-11T11:10:33.593614Z",
"shell.execute_reply": "2023-08-11T11:10:33.592971Z"
},
"id": "gdMpt9ZEjVGu"
},
"outputs": [],
"source": [
"pt_tokenizer = text.BertTokenizer('pt_vocab.txt', **bert_tokenizer_params)\n",
"en_tokenizer = text.BertTokenizer('en_vocab.txt', **bert_tokenizer_params)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "BhPZafCUds86"
},
"source": [
"Now you can use it to encode some text. Take a batch of 3 examples from the english data:"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:10:33.597123Z",
"iopub.status.busy": "2023-08-11T11:10:33.596621Z",
"iopub.status.idle": "2023-08-11T11:10:33.945079Z",
"shell.execute_reply": "2023-08-11T11:10:33.944380Z"
},
"id": "NKF0QJjtUm9T"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"b'and when you improve searchability , you actually take away the one advantage of print , which is serendipity .'\n",
"b'but what if it were active ?'\n",
"b\"but they did n't test for curiosity .\"\n"
]
}
],
"source": [
"for pt_examples, en_examples in train_examples.batch(3).take(1):\n",
" for ex in en_examples:\n",
" print(ex.numpy())"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "k9OEIBWopMxW"
},
"source": [
"Run it through the `BertTokenizer.tokenize` method. Initially, this returns a `tf.RaggedTensor` with axes `(batch, word, word-piece)`:"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:10:33.948777Z",
"iopub.status.busy": "2023-08-11T11:10:33.948275Z",
"iopub.status.idle": "2023-08-11T11:10:34.005473Z",
"shell.execute_reply": "2023-08-11T11:10:34.004898Z"
},
"id": "AeTM81lAc8q1"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[72, 117, 79, 1259, 1491, 2362, 13, 79, 150, 184, 311, 71, 103, 2308, 74, 2679, 13, 148, 80, 55, 4840, 1434, 2423, 540, 15]\n",
"[87, 90, 107, 76, 129, 1852, 30]\n",
"[87, 83, 149, 50, 9, 56, 664, 85, 2512, 15]\n"
]
}
],
"source": [
"# Tokenize the examples -> (batch, word, word-piece)\n",
"token_batch = en_tokenizer.tokenize(en_examples)\n",
"# Merge the word and word-piece axes -> (batch, tokens)\n",
"token_batch = token_batch.merge_dims(-2,-1)\n",
"\n",
"for ex in token_batch.to_list():\n",
" print(ex)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "UbdIaW6kX8hu"
},
"source": [
"If you replace the token IDs with their text representations (using `tf.gather`) you can see that in the first example the words `\"searchability\"` and `\"serendipity\"` have been decomposed into `\"search ##ability\"` and `\"s ##ere ##nd ##ip ##ity\"`:"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:10:34.008883Z",
"iopub.status.busy": "2023-08-11T11:10:34.008433Z",
"iopub.status.idle": "2023-08-11T11:10:34.060789Z",
"shell.execute_reply": "2023-08-11T11:10:34.060215Z"
},
"id": "FA6nKYx5U3Nj"
},
"outputs": [
{
"data": {
"text/plain": [
"<tf.Tensor: shape=(3,), dtype=string, numpy=\n",
"array([b'and when you improve search ##ability , you actually take away the one advantage of print , which is s ##ere ##nd ##ip ##ity .',\n",
" b'but what if it were active ?',\n",
" b\"but they did n ' t test for curiosity .\"], dtype=object)>"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Lookup each token id in the vocabulary.\n",
"txt_tokens = tf.gather(en_vocab, token_batch)\n",
"# Join with spaces.\n",
"tf.strings.reduce_join(txt_tokens, separator=' ', axis=-1)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "wY2XrhyRem2O"
},
"source": [
"To re-assemble words from the extracted tokens, use the `BertTokenizer.detokenize` method:"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:10:34.064135Z",
"iopub.status.busy": "2023-08-11T11:10:34.063886Z",
"iopub.status.idle": "2023-08-11T11:10:34.119505Z",
"shell.execute_reply": "2023-08-11T11:10:34.118918Z"
},
"id": "toBXQSrgemRw"
},
"outputs": [
{
"data": {
"text/plain": [
"<tf.Tensor: shape=(3,), dtype=string, numpy=\n",
"array([b'and when you improve searchability , you actually take away the one advantage of print , which is serendipity .',\n",
" b'but what if it were active ?',\n",
" b\"but they did n ' t test for curiosity .\"], dtype=object)>"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"words = en_tokenizer.detokenize(token_batch)\n",
"tf.strings.reduce_join(words, separator=' ', axis=-1)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "WIZWWy_iueQY"
},
"source": [
"> Note: `BertTokenizer.tokenize`/`BertTokenizer.detokenize` does not round\n",
"trip losslessly. The result of `detokenize` will not, in general, have the\n",
"same content or offsets as the input to `tokenize`. This is because of the\n",
"\"basic tokenization\" step, that splits the strings into words before\n",
"applying the `WordpieceTokenizer`, includes irreversible\n",
"steps like lower-casing and splitting on punctuation. `WordpieceTokenizer`\n",
"on the other hand **is** reversible."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_bN30iCexTPY"
},
"source": [
"## Customization and export\n",
"\n",
"This tutorial builds the text tokenizer and detokenizer used by the [Transformer](https://tensorflow.org/text/tutorials/transformer) tutorial. This section adds methods and processing steps to simplify that tutorial, and exports the tokenizers using `tf.saved_model` so they can be imported by the other tutorials."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5wpc7oFkwgni"
},
"source": [
"### Custom tokenization"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "NaUR9hHj0PUy"
},
"source": [
"The downstream tutorials both expect the tokenized text to include `[START]` and `[END]` tokens.\n",
"\n",
"The `reserved_tokens` reserve space at the beginning of the vocabulary, so `[START]` and `[END]` have the same indexes for both languages:"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:10:34.123281Z",
"iopub.status.busy": "2023-08-11T11:10:34.122781Z",
"iopub.status.idle": "2023-08-11T11:10:34.129983Z",
"shell.execute_reply": "2023-08-11T11:10:34.129450Z"
},
"id": "gyyoa5De0WQu"
},
"outputs": [],
"source": [
"START = tf.argmax(tf.constant(reserved_tokens) == \"[START]\")\n",
"END = tf.argmax(tf.constant(reserved_tokens) == \"[END]\")\n",
"\n",
"def add_start_end(ragged):\n",
" count = ragged.bounding_shape()[0]\n",
" starts = tf.fill([count,1], START)\n",
" ends = tf.fill([count,1], END)\n",
" return tf.concat([starts, ragged, ends], axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:10:34.133340Z",
"iopub.status.busy": "2023-08-11T11:10:34.132753Z",
"iopub.status.idle": "2023-08-11T11:10:34.188202Z",
"shell.execute_reply": "2023-08-11T11:10:34.187615Z"
},
"id": "MrZjQIwZ6NHu"
},
"outputs": [
{
"data": {
"text/plain": [
"<tf.Tensor: shape=(3,), dtype=string, numpy=\n",
"array([b'[START] and when you improve searchability , you actually take away the one advantage of print , which is serendipity . [END]',\n",
" b'[START] but what if it were active ? [END]',\n",
" b\"[START] but they did n ' t test for curiosity . [END]\"],\n",
" dtype=object)>"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"words = en_tokenizer.detokenize(add_start_end(token_batch))\n",
"tf.strings.reduce_join(words, separator=' ', axis=-1)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "WMmHS5VT_suH"
},
"source": [
"### Custom detokenization\n",
"\n",
"Before exporting the tokenizers there are a couple of things you can cleanup for the downstream tutorials:\n",
"\n",
"1. They want to generate clean text output, so drop reserved tokens like `[START]`, `[END]` and `[PAD]`.\n",
"2. They're interested in complete strings, so apply a string join along the `words` axis of the result. "
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:10:34.191505Z",
"iopub.status.busy": "2023-08-11T11:10:34.191007Z",
"iopub.status.idle": "2023-08-11T11:10:34.195298Z",
"shell.execute_reply": "2023-08-11T11:10:34.194731Z"
},
"id": "x9vXUQPX1ZFA"
},
"outputs": [],
"source": [
"def cleanup_text(reserved_tokens, token_txt):\n",
" # Drop the reserved tokens, except for \"[UNK]\".\n",
" bad_tokens = [re.escape(tok) for tok in reserved_tokens if tok != \"[UNK]\"]\n",
" bad_token_re = \"|\".join(bad_tokens)\n",
" \n",
" bad_cells = tf.strings.regex_full_match(token_txt, bad_token_re)\n",
" result = tf.ragged.boolean_mask(token_txt, ~bad_cells)\n",
"\n",
" # Join them into strings.\n",
" result = tf.strings.reduce_join(result, separator=' ', axis=-1)\n",
"\n",
" return result"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:10:34.198519Z",
"iopub.status.busy": "2023-08-11T11:10:34.198142Z",
"iopub.status.idle": "2023-08-11T11:10:34.202222Z",
"shell.execute_reply": "2023-08-11T11:10:34.201689Z"
},
"id": "NMSpZUV7sQYw"
},
"outputs": [
{
"data": {
"text/plain": [
"array([b'and when you improve searchability , you actually take away the one advantage of print , which is serendipity .',\n",
" b'but what if it were active ?',\n",
" b\"but they did n't test for curiosity .\"], dtype=object)"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"en_examples.numpy()"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:10:34.205335Z",
"iopub.status.busy": "2023-08-11T11:10:34.204817Z",
"iopub.status.idle": "2023-08-11T11:10:34.243506Z",
"shell.execute_reply": "2023-08-11T11:10:34.242904Z"
},
"id": "yB3MJhNvkuBb"
},
"outputs": [
{
"data": {
"text/plain": [
"<tf.RaggedTensor [[b'and', b'when', b'you', b'improve', b'searchability', b',', b'you',\n",
" b'actually', b'take', b'away', b'the', b'one', b'advantage', b'of',\n",
" b'print', b',', b'which', b'is', b'serendipity', b'.'] ,\n",
" [b'but', b'what', b'if', b'it', b'were', b'active', b'?'],\n",
" [b'but', b'they', b'did', b'n', b\"'\", b't', b'test', b'for', b'curiosity',\n",
" b'.'] ]>"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"token_batch = en_tokenizer.tokenize(en_examples).merge_dims(-2,-1)\n",
"words = en_tokenizer.detokenize(token_batch)\n",
"words"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:10:34.246730Z",
"iopub.status.busy": "2023-08-11T11:10:34.246329Z",
"iopub.status.idle": "2023-08-11T11:10:34.272062Z",
"shell.execute_reply": "2023-08-11T11:10:34.271514Z"
},
"id": "ED5rMeZE6HT3"
},
"outputs": [
{
"data": {
"text/plain": [
"array([b'and when you improve searchability , you actually take away the one advantage of print , which is serendipity .',\n",
" b'but what if it were active ?',\n",
" b\"but they did n ' t test for curiosity .\"], dtype=object)"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cleanup_text(reserved_tokens, words).numpy()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "HEfEdRi11Re4"
},
"source": [
"### Export"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "uFuo1KZjpEPR"
},
"source": [
"The following code block builds a `CustomTokenizer` class to contain the `text.BertTokenizer` instances, the custom logic, and the `@tf.function` wrappers required for export. "
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:10:34.275552Z",
"iopub.status.busy": "2023-08-11T11:10:34.274994Z",
"iopub.status.idle": "2023-08-11T11:10:34.284520Z",
"shell.execute_reply": "2023-08-11T11:10:34.283895Z"
},
"id": "f1q1hCpH72Vj"
},
"outputs": [],
"source": [
"class CustomTokenizer(tf.Module):\n",
" def __init__(self, reserved_tokens, vocab_path):\n",
" self.tokenizer = text.BertTokenizer(vocab_path, lower_case=True)\n",
" self._reserved_tokens = reserved_tokens\n",
" self._vocab_path = tf.saved_model.Asset(vocab_path)\n",
"\n",
" vocab = pathlib.Path(vocab_path).read_text().splitlines()\n",
" self.vocab = tf.Variable(vocab)\n",
"\n",
" ## Create the signatures for export: \n",
"\n",
" # Include a tokenize signature for a batch of strings. \n",
" self.tokenize.get_concrete_function(\n",
" tf.TensorSpec(shape=[None], dtype=tf.string))\n",
" \n",
" # Include `detokenize` and `lookup` signatures for:\n",
" # * `Tensors` with shapes [tokens] and [batch, tokens]\n",
" # * `RaggedTensors` with shape [batch, tokens]\n",
" self.detokenize.get_concrete_function(\n",
" tf.TensorSpec(shape=[None, None], dtype=tf.int64))\n",
" self.detokenize.get_concrete_function(\n",
" tf.RaggedTensorSpec(shape=[None, None], dtype=tf.int64))\n",
"\n",
" self.lookup.get_concrete_function(\n",
" tf.TensorSpec(shape=[None, None], dtype=tf.int64))\n",
" self.lookup.get_concrete_function(\n",
" tf.RaggedTensorSpec(shape=[None, None], dtype=tf.int64))\n",
"\n",
" # These `get_*` methods take no arguments\n",
" self.get_vocab_size.get_concrete_function()\n",
" self.get_vocab_path.get_concrete_function()\n",
" self.get_reserved_tokens.get_concrete_function()\n",
" \n",
" @tf.function\n",
" def tokenize(self, strings):\n",
" enc = self.tokenizer.tokenize(strings)\n",
" # Merge the `word` and `word-piece` axes.\n",
" enc = enc.merge_dims(-2,-1)\n",
" enc = add_start_end(enc)\n",
" return enc\n",
"\n",
" @tf.function\n",
" def detokenize(self, tokenized):\n",
" words = self.tokenizer.detokenize(tokenized)\n",
" return cleanup_text(self._reserved_tokens, words)\n",
"\n",
" @tf.function\n",
" def lookup(self, token_ids):\n",
" return tf.gather(self.vocab, token_ids)\n",
"\n",
" @tf.function\n",
" def get_vocab_size(self):\n",
" return tf.shape(self.vocab)[0]\n",
"\n",
" @tf.function\n",
" def get_vocab_path(self):\n",
" return self._vocab_path\n",
"\n",
" @tf.function\n",
" def get_reserved_tokens(self):\n",
" return tf.constant(self._reserved_tokens)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "RHzEnTQM6nBD"
},
"source": [
"Build a `CustomTokenizer` for each language:"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:10:34.287910Z",
"iopub.status.busy": "2023-08-11T11:10:34.287468Z",
"iopub.status.idle": "2023-08-11T11:10:36.617150Z",
"shell.execute_reply": "2023-08-11T11:10:36.616443Z"
},
"id": "cU8yFBCSruz4"
},
"outputs": [],
"source": [
"tokenizers = tf.Module()\n",
"tokenizers.pt = CustomTokenizer(reserved_tokens, 'pt_vocab.txt')\n",
"tokenizers.en = CustomTokenizer(reserved_tokens, 'en_vocab.txt')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZYfrmDhy6syT"
},
"source": [
"Export the tokenizers as a `saved_model`:"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:10:36.621401Z",
"iopub.status.busy": "2023-08-11T11:10:36.620912Z",
"iopub.status.idle": "2023-08-11T11:10:38.869823Z",
"shell.execute_reply": "2023-08-11T11:10:38.869113Z"
},
"id": "aieDGooa9ms7"
},
"outputs": [],
"source": [
"model_name = 'ted_hrlr_translate_pt_en_converter'\n",
"tf.saved_model.save(tokenizers, model_name)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "XoCMz2Fm61v6"
},
"source": [
"Reload the `saved_model` and test the methods:"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:10:38.874346Z",
"iopub.status.busy": "2023-08-11T11:10:38.873757Z",
"iopub.status.idle": "2023-08-11T11:10:39.621687Z",
"shell.execute_reply": "2023-08-11T11:10:39.621100Z"
},
"id": "9SB_BHwqsHkb"
},
"outputs": [
{
"data": {
"text/plain": [
"7010"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"reloaded_tokenizers = tf.saved_model.load(model_name)\n",
"reloaded_tokenizers.en.get_vocab_size().numpy()"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:10:39.625499Z",
"iopub.status.busy": "2023-08-11T11:10:39.624852Z",
"iopub.status.idle": "2023-08-11T11:10:39.923428Z",
"shell.execute_reply": "2023-08-11T11:10:39.922661Z"
},
"id": "W_Ze3WL3816x"
},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 2, 4006, 2358, 687, 1192, 2365, 4, 3]])"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tokens = reloaded_tokenizers.en.tokenize(['Hello TensorFlow!'])\n",
"tokens.numpy()"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:10:39.927142Z",
"iopub.status.busy": "2023-08-11T11:10:39.926503Z",
"iopub.status.idle": "2023-08-11T11:10:39.955316Z",
"shell.execute_reply": "2023-08-11T11:10:39.954642Z"
},
"id": "v9o93bzcuhyC"
},
"outputs": [
{
"data": {
"text/plain": [
"<tf.RaggedTensor [[b'[START]', b'hello', b'tens', b'##or', b'##f', b'##low', b'!',\n",
" b'[END]']]>"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"text_tokens = reloaded_tokenizers.en.lookup(tokens)\n",
"text_tokens"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:10:39.958507Z",
"iopub.status.busy": "2023-08-11T11:10:39.958038Z",
"iopub.status.idle": "2023-08-11T11:10:40.092706Z",
"shell.execute_reply": "2023-08-11T11:10:40.091993Z"
},
"id": "Y0205N_8dDT5"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"hello tensorflow !\n"
]
}
],
"source": [
"round_trip = reloaded_tokenizers.en.detokenize(tokens)\n",
"\n",
"print(round_trip.numpy()[0].decode('utf-8'))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "pSKFDQoBjnNp"
},
"source": [
"Archive it for the [translation tutorials](https://tensorflow.org/text/tutorials/transformer):"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:10:40.096200Z",
"iopub.status.busy": "2023-08-11T11:10:40.095722Z",
"iopub.status.idle": "2023-08-11T11:10:40.324144Z",
"shell.execute_reply": "2023-08-11T11:10:40.323179Z"
},
"id": "eY0SoE3Yj2it"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" adding: ted_hrlr_translate_pt_en_converter/ (stored 0%)\r\n",
" adding: ted_hrlr_translate_pt_en_converter/variables/ (stored 0%)\r\n",
" adding: ted_hrlr_translate_pt_en_converter/variables/variables.data-00000-of-00001 (deflated 51%)\r\n",
" adding: ted_hrlr_translate_pt_en_converter/variables/variables.index (deflated 33%)\r\n",
" adding: ted_hrlr_translate_pt_en_converter/assets/ (stored 0%)\r\n",
" adding: ted_hrlr_translate_pt_en_converter/assets/en_vocab.txt (deflated 54%)\r\n",
" adding: ted_hrlr_translate_pt_en_converter/assets/pt_vocab.txt (deflated 57%)\r\n",
" adding: ted_hrlr_translate_pt_en_converter/saved_model.pb (deflated 91%)\r\n",
" adding: ted_hrlr_translate_pt_en_converter/fingerprint.pb (stored 0%)\r\n"
]
}
],
"source": [
"!zip -r {model_name}.zip {model_name}"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:10:40.328461Z",
"iopub.status.busy": "2023-08-11T11:10:40.327855Z",
"iopub.status.idle": "2023-08-11T11:10:40.516972Z",
"shell.execute_reply": "2023-08-11T11:10:40.516101Z"
},
"id": "0Synq0RekAXe"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"168K\tted_hrlr_translate_pt_en_converter.zip\r\n"
]
}
],
"source": [
"!du -h *.zip"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "AtmGkGBuGHa2"
},
"source": [
"<a id=\"algorithm\"></a>\n",
"\n",
"## Optional: The algorithm\n",
"\n",
"\n",
"It's worth noting here that there are two versions of the WordPiece algorithm: Bottom-up and top-down. In both cases goal is the same: \"Given a training corpus and a number of desired\n",
"tokens D, the optimization problem is to select D wordpieces such that the resulting corpus is minimal in the\n",
"number of wordpieces when segmented according to the chosen wordpiece model.\"\n",
"\n",
"The original [bottom-up WordPiece algorithm](https://static.googleusercontent.com/media/research.google.com/ja//pubs/archive/37842.pdf), is based on [byte-pair encoding](https://towardsdatascience.com/byte-pair-encoding-the-dark-horse-of-modern-nlp-eb36c7df4f10). Like BPE, It starts with the alphabet, and iteratively combines common bigrams to form word-pieces and words.\n",
"\n",
"TensorFlow Text's vocabulary generator follows the top-down implementation from [BERT](https://arxiv.org/pdf/1810.04805.pdf). Starting with words and breaking them down into smaller components until they hit the frequency threshold, or can't be broken down further. The next section describes this in detail. For Japanese, Chinese and Korean this top-down approach doesn't work since there are no explicit word units to start with. For those you need a [different approach](https://tfhub.dev/google/zh_segmentation/1).\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "FLA2QhffYEo0"
},
"source": [
"### Choosing the vocabulary\n",
"\n",
"The top-down WordPiece generation algorithm takes in a set of (word, count) pairs and a threshold `T`, and returns a vocabulary `V`.\n",
"\n",
"The algorithm is iterative. It is run for `k` iterations, where typically `k = 4`, but only the first two are really important. The third and fourth (and beyond) are just identical to the second. Note that each step of the binary search runs the algorithm from scratch for `k` iterations.\n",
"\n",
"The iterations described below:\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZqfY0p3PYIKr"
},
"source": [
"#### First iteration\n",
"\n",
"1. Iterate over every word and count pair in the input, denoted as `(w, c)`.\n",
"2. For each word `w`, generate every substring, denoted as `s`. E.g., for the\n",
" word `human`, we generate `{h, hu, hum, huma,\n",
" human, ##u, ##um, ##uma, ##uman, ##m, ##ma, ##man, #a, ##an, ##n}`.\n",
"3. Maintain a substring-to-count hash map, and increment the count of each `s`\n",
" by `c`. E.g., if we have `(human, 113)` and `(humas, 3)` in our input, the\n",
" count of `s = huma` will be `113+3=116`.\n",
"4. Once we've collected the counts of every substring, iterate over the `(s,\n",
" c)` pairs *starting with the longest `s` first*.\n",
"5. Keep any `s` that has a `c > T`. E.g., if `T = 100` and we have `(pers,\n",
" 231); (dogs, 259); (##rint; 76)`, then we would keep `pers` and `dogs`.\n",
"6. When an `s` is kept, subtract off its count from all of its prefixes. This\n",
" is the reason for sorting all of the `s` by length in step 4. This is a\n",
" critical part of the algorithm, because otherwise words would be double\n",
" counted. For example, let's say that we've kept `human` and we get to\n",
" `(huma, 116)`. We know that `113` of those `116` came from `human`, and `3`\n",
" came from `humas`. However, now that `human` is in our vocabulary, we know\n",
" we will never segment `human` into `huma ##n`. So once `human` has been\n",
" kept, then `huma` only has an *effective* count of `3`.\n",
"\n",
"This algorithm will generate a set of word pieces `s` (many of which will be\n",
"whole words `w`), which we *could* use as our WordPiece vocabulary.\n",
"\n",
"However, there is a problem: This algorithm will severely overgenerate word\n",
"pieces. The reason is that we only subtract off counts of prefix tokens.\n",
"Therefore, if we keep the word `human`, we will subtract off the count for `h,\n",
"hu, hu, huma`, but not for `##u, ##um, ##uma, ##uman` and so on. So we might\n",
"generate both `human` and `##uman` as word pieces, even though `##uman` will\n",
"never be applied.\n",
"\n",
"So why not subtract off the counts for every *substring*, not just every\n",
"*prefix*? Because then we could end up subtracting off the counts multiple\n",
"times. Let's say that we're processing `s` of length 5 and we keep both\n",
"`(##denia, 129)` and `(##eniab, 137)`, where `65` of those counts came from the\n",
"word `undeniable`. If we subtract off from *every* substring, we would subtract\n",
"`65` from the substring `##enia` twice, even though we should only subtract\n",
"once. However, if we only subtract off from prefixes, it will correctly only be\n",
"subtracted once."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "NNCtKR8xT9wX"
},
"source": [
"#### Second (and third ...) iteration\n",
"\n",
"To solve the overgeneration issue mentioned above, we perform multiple\n",
"iterations of the algorithm.\n",
"\n",
"Subsequent iterations are identical to the first, with one important\n",
"distinction: In step 2, instead of considering *every* substring, we apply the\n",
"WordPiece tokenization algorithm using the vocabulary from the previous\n",
"iteration, and only consider substrings which *start* on a split point.\n",
"\n",
"For example, let's say that we're performing step 2 of the algorithm and\n",
"encounter the word `undeniable`. In the first iteration, we would consider every\n",
"substring, e.g., `{u, un, und, ..., undeniable, ##n, ##nd, ..., ##ndeniable,\n",
"...}`.\n",
"\n",
"Now, for the second iteration, we will only consider a subset of these. Let's\n",
"say that after the first iteration, the relevant word pieces are:\n",
"\n",
"`un, ##deni, ##able, ##ndeni, ##iable`\n",
"\n",
"The WordPiece algorithm will segment this into `un ##deni ##able` (see the\n",
"section [Applying WordPiece](#applying-wordpiece) for more information). In this\n",
"case, we will only consider substrings that *start* at a segmentation point. We\n",
"will still consider every possible *end* position. So during the second\n",
"iteration, the set of `s` for `undeniable` is:\n",
"\n",
"`{u, un, und, unden, undeni, undenia, undeniab, undeniabl,\n",
"undeniable, ##d, ##de, ##den, ##deni, ##denia, ##deniab, ##deniabl\n",
", ##deniable, ##a, ##ab, ##abl, ##able}`\n",
"\n",
"The algorithm is otherwise identical. In this example, in the first iteration,\n",
"the algorithm produces the spurious tokens `##ndeni` and `##iable`. Now, these\n",
"tokens are never considered, so they will not be generated by the second\n",
"iteration. We perform several iterations just to make sure the results converge\n",
"(although there is no literal convergence guarantee).\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "AdUkqe84YQA5"
},
"source": [
"### Applying WordPiece\n",
"\n",
"<a id=\"applying_wordpiece\"></a>\n",
"\n",
"Once a WordPiece vocabulary has been generated, we need to be able to apply it\n",
"to new data. The algorithm is a simple greedy longest-match-first application.\n",
"\n",
"For example, consider segmenting the word `undeniable`.\n",
"\n",
"We first lookup `undeniable` in our WordPiece dictionary, and if it's present,\n",
"we're done. If not, we decrement the end point by one character, and repeat,\n",
"e.g., `undeniabl`.\n",
"\n",
"Eventually, we will either find a subtoken in our vocabulary, or get down to a\n",
"single character subtoken. (In general, we assume that every character is in our\n",
"vocabulary, although this might not be the case for rare Unicode characters. If\n",
"we encounter a rare Unicode character that's not in the vocabulary we simply map\n",
"the entire word to `<unk>`).\n",
"\n",
"In this case, we find `un` in our vocabulary. So that's our first word piece.\n",
"Then we jump to the end of `un` and repeat the processing, e.g., try to find\n",
"`##deniable`, then `##deniabl`, etc. This is repeated until we've segmented the\n",
"entire word."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "rjRQKQzpYMl2"
},
"source": [
"### Intuition\n",
"\n",
"Intuitively, WordPiece tokenization is trying to satisfy two different\n",
"objectives:\n",
"\n",
"1. Tokenize the data into the *least* number of pieces as possible. It is\n",
" important to keep in mind that the WordPiece algorithm does not \"want\" to\n",
" split words. Otherwise, it would just split every word into its characters,\n",
" e.g., `human -> {h, ##u, ##m, ##a, #n}`. This is one critical thing that\n",
" makes WordPiece different from morphological splitters, which will split\n",
" linguistic morphemes even for common words (e.g., `unwanted -> {un, want,\n",
" ed}`).\n",
"\n",
"2. When a word does have to be split into pieces, split it into pieces that\n",
" have maximal counts in the training data. For example, the reason why the\n",
" word `undeniable` would be split into `{un, ##deni, ##able}` rather than\n",
" alternatives like `{unde, ##niab, ##le}` is that the counts for `un` and\n",
" `##able` in particular will be very high, since these are common prefixes\n",
" and suffixes. Even though the count for `##le` must be higher than `##able`,\n",
" the low counts of `unde` and `##niab` will make this a less \"desirable\"\n",
" tokenization to the algorithm."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "KQZ38Uus-Xv1"
},
"source": [
"## Optional: tf.lookup\n",
"\n",
"<a id=\"tf.lookup\"></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "NreDSRmJNG_h"
},
"source": [
"If you need access to, or more control over the vocabulary it's worth noting that you can build the lookup table yourself and pass that to `BertTokenizer`.\n",
"\n",
"When you pass a string, `BertTokenizer` does the following:"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:10:40.521579Z",
"iopub.status.busy": "2023-08-11T11:10:40.521287Z",
"iopub.status.idle": "2023-08-11T11:10:40.528923Z",
"shell.execute_reply": "2023-08-11T11:10:40.528340Z"
},
"id": "thAF1DzQOQXl"
},
"outputs": [],
"source": [
"pt_lookup = tf.lookup.StaticVocabularyTable(\n",
" num_oov_buckets=1,\n",
" initializer=tf.lookup.TextFileInitializer(\n",
" filename='pt_vocab.txt',\n",
" key_dtype=tf.string,\n",
" key_index = tf.lookup.TextFileIndex.WHOLE_LINE,\n",
" value_dtype = tf.int64,\n",
" value_index=tf.lookup.TextFileIndex.LINE_NUMBER)) \n",
"pt_tokenizer = text.BertTokenizer(pt_lookup)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ERY4FYN7O66R"
},
"source": [
"Now you have direct access to the lookup table used in the tokenizer."
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:10:40.532362Z",
"iopub.status.busy": "2023-08-11T11:10:40.531811Z",
"iopub.status.idle": "2023-08-11T11:10:40.539287Z",
"shell.execute_reply": "2023-08-11T11:10:40.538647Z"
},
"id": "337_DcAMOs6N"
},
"outputs": [
{
"data": {
"text/plain": [
"<tf.Tensor: shape=(5,), dtype=int64, numpy=array([7765, 85, 86, 87, 7765])>"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pt_lookup.lookup(tf.constant(['é', 'um', 'uma', 'para', 'não']))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "BdZ82x5mPDE9"
},
"source": [
"You don't need to use a vocabulary file, `tf.lookup` has other initializer options. If you have the vocabulary in memory you can use `lookup.KeyValueTensorInitializer`:"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"execution": {
"iopub.execute_input": "2023-08-11T11:10:40.542840Z",
"iopub.status.busy": "2023-08-11T11:10:40.542258Z",
"iopub.status.idle": "2023-08-11T11:10:40.555927Z",
"shell.execute_reply": "2023-08-11T11:10:40.555329Z"
},
"id": "mzkrmO9H-b9i"
},
"outputs": [],
"source": [
"pt_lookup = tf.lookup.StaticVocabularyTable(\n",
" num_oov_buckets=1,\n",
" initializer=tf.lookup.KeyValueTensorInitializer(\n",
" keys=pt_vocab,\n",
" values=tf.range(len(pt_vocab), dtype=tf.int64))) \n",
"pt_tokenizer = text.BertTokenizer(pt_lookup)"
]
}
],
"metadata": {
"colab": {
"collapsed_sections": [],
"name": "subwords_tokenizer.ipynb",
"toc_visible": true
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.17"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|