File size: 4,473 Bytes
4571262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8712ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
--


https://colab.research.google.com/drive/1c7oHSEemh8Ih4ExRd4bQ6WHADVY-Mfj1#scrollTo=ADmdVbV93wpy











-
base_model: silma-ai/SILMA-9B-Instruct-v1.0
language:
- ar
- en
library_name: transformers
license: gemma
pipeline_tag: text-generation
tags:
- conversational
- llama-cpp
- gguf-my-repo
extra_gated_button_content: Acknowledge license
model-index:
- name: SILMA-9B-Instruct-v1.0
  results:
  - task:
      type: text-generation
    dataset:
      name: MMLU (Arabic)
      type: OALL/Arabic_MMLU
    metrics:
    - type: loglikelihood_acc_norm
      value: 52.55
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/OALL/Open-Arabic-LLM-Leaderboard
      name: Open Arabic LLM Leaderboard
  - task:
      type: text-generation
    dataset:
      name: AlGhafa
      type: OALL/AlGhafa-Arabic-LLM-Benchmark-Native
    metrics:
    - type: loglikelihood_acc_norm
      value: 71.85
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/OALL/Open-Arabic-LLM-Leaderboard
      name: Open Arabic LLM Leaderboard
  - task:
      type: text-generation
    dataset:
      name: ARC Challenge (Arabic)
      type: OALL/AlGhafa-Arabic-LLM-Benchmark-Translated
    metrics:
    - type: loglikelihood_acc_norm
      value: 78.19
      name: acc_norm
    - type: loglikelihood_acc_norm
      value: 86
      name: acc_norm
    - type: loglikelihood_acc_norm
      value: 64.05
      name: acc_norm
    - type: loglikelihood_acc_norm
      value: 78.89
      name: acc_norm
    - type: loglikelihood_acc_norm
      value: 47.64
      name: acc_norm
    - type: loglikelihood_acc_norm
      value: 72.93
      name: acc_norm
    - type: loglikelihood_acc_norm
      value: 71.96
      name: acc_norm
    - type: loglikelihood_acc_norm
      value: 75.55
      name: acc_norm
    - type: loglikelihood_acc_norm
      value: 91.26
      name: acc_norm
    - type: loglikelihood_acc_norm
      value: 67.59
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/OALL/Open-Arabic-LLM-Leaderboard
      name: Open Arabic LLM Leaderboard
  - task:
      type: text-generation
    dataset:
      name: ACVA
      type: OALL/ACVA
    metrics:
    - type: loglikelihood_acc_norm
      value: 78.89
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/OALL/Open-Arabic-LLM-Leaderboard
      name: Open Arabic LLM Leaderboard
  - task:
      type: text-generation
    dataset:
      name: Arabic_EXAMS
      type: OALL/Arabic_EXAMS
    metrics:
    - type: loglikelihood_acc_norm
      value: 51.4
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/OALL/Open-Arabic-LLM-Leaderboard
      name: Open Arabic LLM Leaderboard
---

# goodasdgood/SILMA-9B-Instruct-v1.0-IQ4_NL-GGUF
This model was converted to GGUF format from [`silma-ai/SILMA-9B-Instruct-v1.0`](https://huggingface.co/silma-ai/SILMA-9B-Instruct-v1.0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/silma-ai/SILMA-9B-Instruct-v1.0) for more details on the model.

## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo goodasdgood/SILMA-9B-Instruct-v1.0-IQ4_NL-GGUF --hf-file silma-9b-instruct-v1.0-iq4_nl-imat.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo goodasdgood/SILMA-9B-Instruct-v1.0-IQ4_NL-GGUF --hf-file silma-9b-instruct-v1.0-iq4_nl-imat.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo goodasdgood/SILMA-9B-Instruct-v1.0-IQ4_NL-GGUF --hf-file silma-9b-instruct-v1.0-iq4_nl-imat.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo goodasdgood/SILMA-9B-Instruct-v1.0-IQ4_NL-GGUF --hf-file silma-9b-instruct-v1.0-iq4_nl-imat.gguf -c 2048
```