File size: 5,585 Bytes
bc618ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import os
from shutil import copyfile
from typing import List, Optional
from omegaconf import DictConfig
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.utils import logging
from .fairseq_dictionary import Dictionary
from .guoke_tokenizer import GuokeTokenizer
from .sentencepiece_bpe import SentencepieceBPE
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"sp_path": "sp.model",
"dict_path": "dict.txt"
}
class FairseqT5Tokenizer(PreTrainedTokenizer):
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
sp_path,
dict_path,
lower,
n_sentinel_tokens=0,
bos_token="<s>",
eos_token="</s>",
unk_token="<unk>",
pad_token="<pad>",
**kwargs
) -> None:
self.sp_path = sp_path
self.dict_path = dict_path
self.lower = lower
self.fs_tokenizer = GuokeTokenizer(
DictConfig(
dict(
lower=lower
)
)
)
self.fs_bpe = SentencepieceBPE(
DictConfig(
dict(
sentencepiece_model=sp_path,
)
)
)
self.fs_dict = Dictionary.load(dict_path)
for i in range(n_sentinel_tokens):
self.fs_dict.add_symbol(f'<sen{i:03d}>')
if "sep_token" in kwargs:
assert kwargs["sep_token"] == eos_token
kwargs.pop("sep_token")
if "cls_token" in kwargs:
assert kwargs["cls_token"] == bos_token
kwargs.pop("cls_token")
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
sep_token=eos_token,
cls_token=bos_token,
lower=self.lower,
n_sentinel_tokens=n_sentinel_tokens,
**kwargs,
)
@property
def vocab_size(self):
return len(self.fs_dict)
def get_vocab(self):
return self.fs_dict.indices
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
def _tokenize(self, text: str) -> List[str]:
return self.fs_bpe.encode(self.fs_tokenizer.encode(text)).split(" ")
def _convert_token_to_id(self, token):
return self.fs_dict.index(token)
def _convert_id_to_token(self, index):
return self.fs_dict[index]
def convert_tokens_to_string(self, tokens):
return self.fs_bpe.decode(" ".join(tokens))
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None):
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_sp_path = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["sp_path"]
)
out_dict_path = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["dict_path"]
)
if os.path.abspath(self.sp_path) != os.path.abspath(out_sp_path):
copyfile(self.sp_path, out_sp_path)
logger.info(f"Copy from {self.sp_path} to {out_sp_path}")
if os.path.abspath(self.dict_path) != os.path.abspath(out_dict_path):
copyfile(self.dict_path, out_dict_path)
logger.info(f"Copy from {self.dict_path} to {out_dict_path}")
return out_sp_path, out_dict_path
|