File size: 2,479 Bytes
109f35f
 
fe97f8b
 
109f35f
 
 
fe97f8b
 
109f35f
 
 
 
 
fe97f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109f35f
 
 
 
 
 
 
fe97f8b
109f35f
fe97f8b
 
 
 
109f35f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5339331
109f35f
 
 
 
 
 
 
 
 
5339331
 
 
 
 
 
 
 
 
109f35f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
library_name: transformers
language:
- en
base_model: gokulsrinivasagan/distilbert_lda_50_v1
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: distilbert_lda_50_v1_qqp
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: GLUE QQP
      type: glue
      args: qqp
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8596339351966361
    - name: F1
      type: f1
      value: 0.8195720598988967
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert_lda_50_v1_qqp

This model is a fine-tuned version of [gokulsrinivasagan/distilbert_lda_50_v1](https://huggingface.co/gokulsrinivasagan/distilbert_lda_50_v1) on the GLUE QQP dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3144
- Accuracy: 0.8596
- F1: 0.8196
- Combined Score: 0.8396

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Combined Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:|
| 0.4097        | 1.0   | 1422 | 0.3464          | 0.8409   | 0.7811 | 0.8110         |
| 0.3001        | 2.0   | 2844 | 0.3144          | 0.8596   | 0.8196 | 0.8396         |
| 0.2371        | 3.0   | 4266 | 0.3187          | 0.8675   | 0.8278 | 0.8477         |
| 0.1845        | 4.0   | 5688 | 0.3464          | 0.8678   | 0.8117 | 0.8397         |
| 0.1427        | 5.0   | 7110 | 0.3925          | 0.8726   | 0.8199 | 0.8463         |
| 0.1113        | 6.0   | 8532 | 0.3813          | 0.8747   | 0.8305 | 0.8526         |
| 0.0887        | 7.0   | 9954 | 0.4306          | 0.8746   | 0.8354 | 0.8550         |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3