File size: 2,675 Bytes
fa3b4a5 450d2d1 fa3b4a5 450d2d1 fa3b4a5 450d2d1 fa3b4a5 450d2d1 fa3b4a5 450d2d1 fa3b4a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
library_name: transformers
language:
- en
base_model: gokulsrinivasagan/bert_tiny_lda_5_v1_book
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: bert_tiny_lda_5_v1_book_mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MRPC
type: glue
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.7181372549019608
- name: F1
type: f1
value: 0.8200312989045383
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert_tiny_lda_5_v1_book_mrpc
This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_5_v1_book](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_5_v1_book) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5735
- Accuracy: 0.7181
- F1: 0.8200
- Combined Score: 0.7691
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:|
| 0.6264 | 1.0 | 15 | 0.6012 | 0.6863 | 0.7994 | 0.7428 |
| 0.5868 | 2.0 | 30 | 0.5820 | 0.6985 | 0.8006 | 0.7496 |
| 0.5558 | 3.0 | 45 | 0.6051 | 0.6961 | 0.8144 | 0.7552 |
| 0.5036 | 4.0 | 60 | 0.5735 | 0.7181 | 0.8200 | 0.7691 |
| 0.4117 | 5.0 | 75 | 0.5969 | 0.7083 | 0.7980 | 0.7531 |
| 0.32 | 6.0 | 90 | 0.6340 | 0.7328 | 0.8256 | 0.7792 |
| 0.2656 | 7.0 | 105 | 0.9137 | 0.7181 | 0.8271 | 0.7726 |
| 0.2023 | 8.0 | 120 | 0.8611 | 0.7230 | 0.8259 | 0.7745 |
| 0.1604 | 9.0 | 135 | 0.9086 | 0.7328 | 0.8310 | 0.7819 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3
|