File size: 2,331 Bytes
b8b7bc4
 
e704cd1
 
b8b7bc4
 
 
e704cd1
 
b8b7bc4
 
 
 
e704cd1
 
 
 
 
 
 
 
 
 
 
 
b8b7bc4
 
 
 
 
 
 
e704cd1
b8b7bc4
e704cd1
 
b8b7bc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3208a77
b8b7bc4
 
 
 
 
 
 
 
 
 
 
3208a77
 
 
 
 
 
 
 
 
 
b8b7bc4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
library_name: transformers
language:
- en
base_model: gokulsrinivasagan/bert_base_lda_100_v1
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: bert_base_lda_100_v1_wnli
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: GLUE WNLI
      type: glue
      args: wnli
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.5633802816901409
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert_base_lda_100_v1_wnli

This model is a fine-tuned version of [gokulsrinivasagan/bert_base_lda_100_v1](https://huggingface.co/gokulsrinivasagan/bert_base_lda_100_v1) on the GLUE WNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6905
- Accuracy: 0.5634

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.8315        | 1.0   | 3    | 0.8521          | 0.4366   |
| 0.7469        | 2.0   | 6    | 0.6964          | 0.5634   |
| 0.7109        | 3.0   | 9    | 0.7104          | 0.4648   |
| 0.707         | 4.0   | 12   | 0.6995          | 0.4930   |
| 0.7035        | 5.0   | 15   | 0.6905          | 0.5634   |
| 0.6961        | 6.0   | 18   | 0.7092          | 0.4648   |
| 0.6981        | 7.0   | 21   | 0.6949          | 0.5211   |
| 0.692         | 8.0   | 24   | 0.7024          | 0.3944   |
| 0.6974        | 9.0   | 27   | 0.7059          | 0.4085   |
| 0.685         | 10.0  | 30   | 0.6992          | 0.4789   |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3