gokulsrinivasagan's picture
End of training
c507b0e verified
metadata
library_name: transformers
language:
  - en
base_model: gokulsrinivasagan/bert_base_lda_100_v1
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - spearmanr
model-index:
  - name: bert_base_lda_100_v1_stsb
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE STSB
          type: glue
          args: stsb
        metrics:
          - name: Spearmanr
            type: spearmanr
            value: 0.5325439607950028

bert_base_lda_100_v1_stsb

This model is a fine-tuned version of gokulsrinivasagan/bert_base_lda_100_v1 on the GLUE STSB dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6844
  • Pearson: 0.5330
  • Spearmanr: 0.5325
  • Combined Score: 0.5328

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 10
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Pearson Spearmanr Combined Score
2.7331 1.0 23 2.6189 0.0643 0.0760 0.0701
1.9804 2.0 46 2.0897 0.2818 0.2688 0.2753
1.7486 3.0 69 1.9471 0.4158 0.4153 0.4155
1.2963 4.0 92 2.3058 0.4520 0.4674 0.4597
1.0162 5.0 115 1.8442 0.4887 0.4888 0.4888
0.8446 6.0 138 1.7664 0.5228 0.5290 0.5259
0.6767 7.0 161 1.7574 0.5152 0.5185 0.5168
0.5349 8.0 184 1.6844 0.5330 0.5325 0.5328
0.4606 9.0 207 1.9862 0.5039 0.5084 0.5062
0.3951 10.0 230 1.8024 0.5266 0.5275 0.5270
0.3624 11.0 253 2.0157 0.5342 0.5423 0.5382
0.3087 12.0 276 2.4094 0.5227 0.5385 0.5306
0.2879 13.0 299 2.0560 0.5304 0.5350 0.5327

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.0
  • Tokenizers 0.20.3