File size: 2,207 Bytes
ba3885f
 
304629b
 
ba3885f
 
 
304629b
 
ba3885f
 
 
 
304629b
 
 
 
 
 
 
 
 
 
 
 
ba3885f
 
 
 
 
 
 
304629b
ba3885f
304629b
 
ba3885f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eba923
ba3885f
 
 
 
 
 
 
 
 
 
 
1eba923
 
 
 
 
 
 
 
ba3885f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
library_name: transformers
language:
- en
base_model: gokulsrinivasagan/bert_base_lda_100_v1
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: bert_base_lda_100_v1_qnli
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: GLUE QNLI
      type: glue
      args: qnli
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8063335163829398
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert_base_lda_100_v1_qnli

This model is a fine-tuned version of [gokulsrinivasagan/bert_base_lda_100_v1](https://huggingface.co/gokulsrinivasagan/bert_base_lda_100_v1) on the GLUE QNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4155
- Accuracy: 0.8063

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.636         | 1.0   | 410  | 0.5723          | 0.7079   |
| 0.471         | 2.0   | 820  | 0.4177          | 0.8091   |
| 0.3689        | 3.0   | 1230 | 0.4155          | 0.8063   |
| 0.2829        | 4.0   | 1640 | 0.4850          | 0.7990   |
| 0.2021        | 5.0   | 2050 | 0.5746          | 0.7889   |
| 0.1431        | 6.0   | 2460 | 0.6877          | 0.7921   |
| 0.1066        | 7.0   | 2870 | 0.7942          | 0.7842   |
| 0.0827        | 8.0   | 3280 | 0.7340          | 0.7917   |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3