File size: 2,168 Bytes
f39ee7c 954a87d f39ee7c 954a87d f39ee7c 954a87d f39ee7c 954a87d f39ee7c 954a87d f39ee7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: mobilebert_add_GLUE_Experiment_logit_kd_rte
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE RTE
type: glue
config: rte
split: validation
args: rte
metrics:
- name: Accuracy
type: accuracy
value: 0.5270758122743683
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mobilebert_add_GLUE_Experiment_logit_kd_rte
This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE RTE dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3914
- Accuracy: 0.5271
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4089 | 1.0 | 20 | 0.3934 | 0.5271 |
| 0.4084 | 2.0 | 40 | 0.3922 | 0.5271 |
| 0.4078 | 3.0 | 60 | 0.3914 | 0.5271 |
| 0.4073 | 4.0 | 80 | 0.3941 | 0.5271 |
| 0.4076 | 5.0 | 100 | 0.3927 | 0.5271 |
| 0.4065 | 6.0 | 120 | 0.3926 | 0.5271 |
| 0.4013 | 7.0 | 140 | 0.4076 | 0.4765 |
| 0.3911 | 8.0 | 160 | 0.4073 | 0.4838 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.9.0
- Tokenizers 0.13.2
|