File size: 2,619 Bytes
95abab6 5fc1780 95abab6 5fc1780 95abab6 5fc1780 95abab6 5fc1780 95abab6 5fc1780 95abab6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
language:
- en
base_model: gokuls/bert_12_layer_model_v2_complete_training_new_wt_init_48
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: hBERTv2_new_pretrain_w_init_48_ver2_qnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE QNLI
type: glue
config: qnli
split: validation
args: qnli
metrics:
- name: Accuracy
type: accuracy
value: 0.5053999633900788
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hBERTv2_new_pretrain_w_init_48_ver2_qnli
This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new_wt_init_48](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new_wt_init_48) on the GLUE QNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6931
- Accuracy: 0.5054
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.7008 | 1.0 | 1637 | 0.6943 | 0.5054 |
| 0.6946 | 2.0 | 3274 | 0.6931 | 0.5054 |
| 0.6938 | 3.0 | 4911 | 0.6932 | 0.4946 |
| 0.6943 | 4.0 | 6548 | 0.6934 | 0.5054 |
| 0.694 | 5.0 | 8185 | 0.6933 | 0.4946 |
| 0.6932 | 6.0 | 9822 | 0.6931 | 0.5054 |
| 0.6934 | 7.0 | 11459 | 0.6931 | 0.5054 |
| 0.6932 | 8.0 | 13096 | 0.6931 | 0.5054 |
| 0.6932 | 9.0 | 14733 | 0.6932 | 0.4946 |
| 0.6932 | 10.0 | 16370 | 0.6933 | 0.4946 |
| 0.6932 | 11.0 | 18007 | 0.6931 | 0.5054 |
| 0.6932 | 12.0 | 19644 | 0.6931 | 0.5054 |
| 0.6932 | 13.0 | 21281 | 0.6931 | 0.4946 |
### Framework versions
- Transformers 4.34.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.14.5
- Tokenizers 0.14.1
|