File size: 2,107 Bytes
5dccc2e 0cdcf01 5dccc2e 0cdcf01 5dccc2e 0cdcf01 5dccc2e 0cdcf01 5dccc2e 0cdcf01 5dccc2e 9f55592 5dccc2e 9f55592 5dccc2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
language:
- en
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: hBERTv1_new_pretrain_qnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE QNLI
type: glue
config: qnli
split: validation
args: qnli
metrics:
- name: Accuracy
type: accuracy
value: 0.6031484532308256
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hBERTv1_new_pretrain_qnli
This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new) on the GLUE QNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6591
- Accuracy: 0.6031
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6783 | 1.0 | 819 | 0.6740 | 0.5861 |
| 0.6609 | 2.0 | 1638 | 0.6591 | 0.6031 |
| 0.6594 | 3.0 | 2457 | 0.6743 | 0.5923 |
| 0.6438 | 4.0 | 3276 | 0.6644 | 0.5876 |
| 0.6421 | 5.0 | 4095 | 0.6731 | 0.5883 |
| 0.6488 | 6.0 | 4914 | 0.6720 | 0.5936 |
| 0.6432 | 7.0 | 5733 | 0.6781 | 0.5923 |
### Framework versions
- Transformers 4.29.2
- Pytorch 1.14.0a0+410ce96
- Datasets 2.12.0
- Tokenizers 0.13.3
|