gokuls's picture
Model save
70bd786
|
raw
history blame
2.31 kB
metadata
base_model: gokuls/bert_12_layer_model_v1_complete_training_new_48
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: hBERTv1_new_pretrain_48_ver2_mnli
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: glue
          type: glue
          config: mnli
          split: validation_matched
          args: mnli
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.31818644931227713

hBERTv1_new_pretrain_48_ver2_mnli

This model is a fine-tuned version of gokuls/bert_12_layer_model_v1_complete_training_new_48 on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0986
  • Accuracy: 0.3182

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1013 1.0 6136 1.0990 0.3182
1.0988 2.0 12272 1.0994 0.3182
1.0987 3.0 18408 1.0986 0.3182
1.0986 4.0 24544 1.0986 0.3545
1.0986 5.0 30680 1.0986 0.3545
1.0986 6.0 36816 1.0986 0.3274
1.0986 7.0 42952 1.0986 0.3545
1.0986 8.0 49088 1.0986 0.3545
1.0986 9.0 55224 1.0986 0.3182

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.1