File size: 2,135 Bytes
e09923c
e86fc2d
 
e09923c
 
 
 
 
 
 
 
 
 
 
 
 
 
e86fc2d
e09923c
 
 
 
 
 
 
e86fc2d
e09923c
 
 
 
 
 
 
e86fc2d
e09923c
e86fc2d
 
e09923c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: distilbert_sa_GLUE_Experiment_qnli_256
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: GLUE QNLI
      type: glue
      config: qnli
      split: validation
      args: qnli
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.6029654036243822
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert_sa_GLUE_Experiment_qnli_256

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE QNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6564
- Accuracy: 0.6030

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.679         | 1.0   | 410  | 0.6614          | 0.5938   |
| 0.6496        | 2.0   | 820  | 0.6564          | 0.6030   |
| 0.6268        | 3.0   | 1230 | 0.6635          | 0.5978   |
| 0.6055        | 4.0   | 1640 | 0.6714          | 0.5933   |
| 0.5836        | 5.0   | 2050 | 0.6964          | 0.5913   |
| 0.5602        | 6.0   | 2460 | 0.7319          | 0.5832   |
| 0.5385        | 7.0   | 2870 | 0.7653          | 0.5718   |


### Framework versions

- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2