File size: 2,337 Bytes
1f2b62a 31d07cc 1f2b62a 31d07cc 1f2b62a 31d07cc 1f2b62a 31d07cc 1f2b62a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: distilbert_sa_GLUE_Experiment_logit_kd_wnli_96
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE WNLI
type: glue
config: wnli
split: validation
args: wnli
metrics:
- name: Accuracy
type: accuracy
value: 0.5633802816901409
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_sa_GLUE_Experiment_logit_kd_wnli_96
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE WNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3441
- Accuracy: 0.5634
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.348 | 1.0 | 3 | 0.3451 | 0.5634 |
| 0.3477 | 2.0 | 6 | 0.3447 | 0.5634 |
| 0.3467 | 3.0 | 9 | 0.3445 | 0.5634 |
| 0.3473 | 4.0 | 12 | 0.3442 | 0.5634 |
| 0.3474 | 5.0 | 15 | 0.3441 | 0.5634 |
| 0.3476 | 6.0 | 18 | 0.3443 | 0.5634 |
| 0.3477 | 7.0 | 21 | 0.3446 | 0.5634 |
| 0.347 | 8.0 | 24 | 0.3449 | 0.5634 |
| 0.3477 | 9.0 | 27 | 0.3451 | 0.5634 |
| 0.3472 | 10.0 | 30 | 0.3453 | 0.5634 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.9.0
- Tokenizers 0.13.2
|