gokuls's picture
Model save
e4f5361
|
raw
history blame
4.01 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: HBERTv1_emb_compress_48_L12_H256_A4
    results: []

HBERTv1_emb_compress_48_L12_H256_A4

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 6.0468
  • Accuracy: 0.1510

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10000
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
7.1159 0.11 10000 7.0948 0.0805
6.698 0.22 20000 6.6913 0.1060
6.5481 0.33 30000 6.5473 0.1167
6.4589 0.44 40000 6.4576 0.1252
6.3925 0.55 50000 6.3858 0.1306
6.3433 0.66 60000 6.3356 0.1353
6.2983 0.76 70000 6.2965 0.1376
6.268 0.87 80000 6.2643 0.1397
6.2359 0.98 90000 6.2381 0.1411
6.2186 1.09 100000 6.2160 0.1429
6.1915 1.2 110000 6.1972 0.1439
6.1811 1.31 120000 6.1834 0.1440
6.1696 1.42 130000 6.1692 0.1455
6.1621 1.53 140000 6.1557 0.1454
6.1417 1.64 150000 6.1466 0.1468
6.1391 1.75 160000 6.1364 0.1466
6.1338 1.86 170000 6.1281 0.1476
6.1285 1.97 180000 6.1200 0.1477
6.1147 2.08 190000 6.1135 0.1483
6.1139 2.18 200000 6.1083 0.1486
6.1004 2.29 210000 6.1004 0.1487
6.0997 2.4 220000 6.0964 0.1489
6.092 2.51 230000 6.0922 0.1490
6.089 2.62 240000 6.0862 0.1490
6.0841 2.73 250000 6.0829 0.1498
6.0847 2.84 260000 6.0799 0.1496
6.0834 2.95 270000 6.0760 0.1501
6.0752 3.06 280000 6.0715 0.1502
6.0693 3.17 290000 6.0697 0.1502
6.0677 3.28 300000 6.0679 0.1502
6.0646 3.39 310000 6.0646 0.1503
6.0625 3.5 320000 6.0623 0.1503
6.0536 3.6 330000 6.0593 0.1507
6.0574 3.71 340000 6.0577 0.1507
6.0496 3.82 350000 6.0560 0.1508
6.0525 3.93 360000 6.0543 0.1507
6.0498 4.04 370000 6.0508 0.1509
6.0557 4.15 380000 6.0509 0.1508
6.0445 4.26 390000 6.0483 0.1509
6.0466 4.37 400000 6.0470 0.1510
6.0507 4.48 410000 6.0471 0.1510
6.0459 4.59 420000 6.0468 0.1510

Framework versions

  • Transformers 4.33.2
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.13.3