Model save
Browse files
README.md
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
model-index:
|
7 |
+
- name: HBERTv1_emb_compress_48_L12_H256_A4
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# HBERTv1_emb_compress_48_L12_H256_A4
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 6.0468
|
19 |
+
- Accuracy: 0.1510
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 1e-05
|
39 |
+
- train_batch_size: 64
|
40 |
+
- eval_batch_size: 64
|
41 |
+
- seed: 10
|
42 |
+
- distributed_type: multi-GPU
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_steps: 10000
|
46 |
+
- num_epochs: 5
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
+
|:-------------:|:-----:|:------:|:---------------:|:--------:|
|
52 |
+
| 7.1159 | 0.11 | 10000 | 7.0948 | 0.0805 |
|
53 |
+
| 6.698 | 0.22 | 20000 | 6.6913 | 0.1060 |
|
54 |
+
| 6.5481 | 0.33 | 30000 | 6.5473 | 0.1167 |
|
55 |
+
| 6.4589 | 0.44 | 40000 | 6.4576 | 0.1252 |
|
56 |
+
| 6.3925 | 0.55 | 50000 | 6.3858 | 0.1306 |
|
57 |
+
| 6.3433 | 0.66 | 60000 | 6.3356 | 0.1353 |
|
58 |
+
| 6.2983 | 0.76 | 70000 | 6.2965 | 0.1376 |
|
59 |
+
| 6.268 | 0.87 | 80000 | 6.2643 | 0.1397 |
|
60 |
+
| 6.2359 | 0.98 | 90000 | 6.2381 | 0.1411 |
|
61 |
+
| 6.2186 | 1.09 | 100000 | 6.2160 | 0.1429 |
|
62 |
+
| 6.1915 | 1.2 | 110000 | 6.1972 | 0.1439 |
|
63 |
+
| 6.1811 | 1.31 | 120000 | 6.1834 | 0.1440 |
|
64 |
+
| 6.1696 | 1.42 | 130000 | 6.1692 | 0.1455 |
|
65 |
+
| 6.1621 | 1.53 | 140000 | 6.1557 | 0.1454 |
|
66 |
+
| 6.1417 | 1.64 | 150000 | 6.1466 | 0.1468 |
|
67 |
+
| 6.1391 | 1.75 | 160000 | 6.1364 | 0.1466 |
|
68 |
+
| 6.1338 | 1.86 | 170000 | 6.1281 | 0.1476 |
|
69 |
+
| 6.1285 | 1.97 | 180000 | 6.1200 | 0.1477 |
|
70 |
+
| 6.1147 | 2.08 | 190000 | 6.1135 | 0.1483 |
|
71 |
+
| 6.1139 | 2.18 | 200000 | 6.1083 | 0.1486 |
|
72 |
+
| 6.1004 | 2.29 | 210000 | 6.1004 | 0.1487 |
|
73 |
+
| 6.0997 | 2.4 | 220000 | 6.0964 | 0.1489 |
|
74 |
+
| 6.092 | 2.51 | 230000 | 6.0922 | 0.1490 |
|
75 |
+
| 6.089 | 2.62 | 240000 | 6.0862 | 0.1490 |
|
76 |
+
| 6.0841 | 2.73 | 250000 | 6.0829 | 0.1498 |
|
77 |
+
| 6.0847 | 2.84 | 260000 | 6.0799 | 0.1496 |
|
78 |
+
| 6.0834 | 2.95 | 270000 | 6.0760 | 0.1501 |
|
79 |
+
| 6.0752 | 3.06 | 280000 | 6.0715 | 0.1502 |
|
80 |
+
| 6.0693 | 3.17 | 290000 | 6.0697 | 0.1502 |
|
81 |
+
| 6.0677 | 3.28 | 300000 | 6.0679 | 0.1502 |
|
82 |
+
| 6.0646 | 3.39 | 310000 | 6.0646 | 0.1503 |
|
83 |
+
| 6.0625 | 3.5 | 320000 | 6.0623 | 0.1503 |
|
84 |
+
| 6.0536 | 3.6 | 330000 | 6.0593 | 0.1507 |
|
85 |
+
| 6.0574 | 3.71 | 340000 | 6.0577 | 0.1507 |
|
86 |
+
| 6.0496 | 3.82 | 350000 | 6.0560 | 0.1508 |
|
87 |
+
| 6.0525 | 3.93 | 360000 | 6.0543 | 0.1507 |
|
88 |
+
| 6.0498 | 4.04 | 370000 | 6.0508 | 0.1509 |
|
89 |
+
| 6.0557 | 4.15 | 380000 | 6.0509 | 0.1508 |
|
90 |
+
| 6.0445 | 4.26 | 390000 | 6.0483 | 0.1509 |
|
91 |
+
| 6.0466 | 4.37 | 400000 | 6.0470 | 0.1510 |
|
92 |
+
| 6.0507 | 4.48 | 410000 | 6.0471 | 0.1510 |
|
93 |
+
| 6.0459 | 4.59 | 420000 | 6.0468 | 0.1510 |
|
94 |
+
|
95 |
+
|
96 |
+
### Framework versions
|
97 |
+
|
98 |
+
- Transformers 4.33.2
|
99 |
+
- Pytorch 1.14.0a0+410ce96
|
100 |
+
- Datasets 2.14.5
|
101 |
+
- Tokenizers 0.13.3
|