bert_imdb / README.md
goktug14's picture
Adding GitHub to Readme.md
3ad4791 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - recall
  - precision
model-index:
  - name: bert_imdb
    results: []
datasets:
  - stanfordnlp/imdb

bert_imdb

This model is a fine-tuned version of google-bert/bert-base-uncased on imdb dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3119
  • Accuracy: 0.9403
  • Recall: 0.9430
  • Precision: 0.9379

To acccess my finetuning tutorial you can check the following repository.

Comparison with SOTA:

  • DistilBERT 66M: 92.82
  • BERT-base + ITPT: 95.63
  • BERT-large: 95.49

Reference: Paperswithcode

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall Precision
0.2099 1.0 1563 0.2456 0.9102 0.8481 0.9683
0.1379 2.0 3126 0.2443 0.9274 0.8911 0.9608
0.0752 3.0 4689 0.2845 0.9391 0.9509 0.9290
0.0352 4.0 6252 0.3119 0.9403 0.9430 0.9379

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0