--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - recall - precision model-index: - name: bert_imdb results: [] datasets: - stanfordnlp/imdb --- # bert_imdb This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3119 - Accuracy: 0.9403 - Recall: 0.9430 - Precision: 0.9379 To acccess my finetuning tutorial you can check the following [repository](https://github.com/GoktugGuvercin/Text-Classification). ## Comparison with SOTA: - DistilBERT 66M: 92.82 - BERT-base + ITPT: 95.63 - BERT-large: 95.49 Reference: [Paperswithcode](https://paperswithcode.com/sota/sentiment-analysis-on-imdb) ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:| | 0.2099 | 1.0 | 1563 | 0.2456 | 0.9102 | 0.8481 | 0.9683 | | 0.1379 | 2.0 | 3126 | 0.2443 | 0.9274 | 0.8911 | 0.9608 | | 0.0752 | 3.0 | 4689 | 0.2845 | 0.9391 | 0.9509 | 0.9290 | | 0.0352 | 4.0 | 6252 | 0.3119 | 0.9403 | 0.9430 | 0.9379 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0