File size: 3,846 Bytes
b656627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import logging
import math
import os
from contextlib import contextmanager

import timm.models.hub as timm_hub
import torch
import torch.distributed as dist
import torch.nn as nn


def is_dist_avail_and_initialized():
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True


def get_rank():
    if not is_dist_avail_and_initialized():
        return 0
    return dist.get_rank()


def is_main_process():
    return get_rank() == 0


def download_cached_file(url, check_hash=True, progress=False):
    """
    Download a file from a URL and cache it locally. If the file already exists, it is not downloaded again.
    If distributed, only the main process downloads the file, and the other processes wait for the file to be downloaded.
    """
    def get_cached_file_path():
        # a hack to sync the file path across processes
        parts = torch.hub.urlparse(url)
        filename = os.path.basename(parts.path)
        cached_file = os.path.join(timm_hub.get_cache_dir(), filename)

        return cached_file

    if is_main_process():
        timm_hub.download_cached_file(url, check_hash, progress)

    if is_dist_avail_and_initialized():
        dist.barrier()

    return get_cached_file_path()


@contextmanager
def all_logging_disabled(highest_level=logging.CRITICAL):
    """
    A context manager that will prevent any logging messages
    triggered during the body from being processed.
    :param highest_level: the maximum logging level in use.
      This would only need to be changed if a custom level greater than CRITICAL
      is defined.
    """
    # two kind-of hacks here:
    #    * can't get the highest logging level in effect => delegate to the user
    #    * can't get the current module-level override => use an undocumented
    #       (but non-private!) interface

    previous_level = logging.root.manager.disable

    logging.disable(highest_level)

    try:
        yield
    finally:
        logging.disable(previous_level)


class LoRALinear(nn.Linear):
    def __init__(self,
                 in_features: int,
                 out_features: int,
                 bias: bool = True,
                 device=None,
                 dtype=None,
                 lora_r=8,
                 lora_alpha=16,
                 lora_dropout=0.05,
                 **kwargs) -> None:
        super().__init__(in_features, out_features, bias, device, dtype)
        self.lora_r = lora_r
        self.lora_alpha = lora_alpha
        if lora_dropout > 0.:
            self.lora_dropout = nn.Dropout(p=lora_dropout)
        else:
            self.lora_dropout = lambda x: x
        self.lora_scaling = self.lora_alpha / self.lora_r

        self.lora_A = nn.Linear(in_features,
                                self.lora_r,
                                bias=False,
                                device=device,
                                dtype=dtype)
        self.lora_B = nn.Linear(self.lora_r,
                                out_features,
                                bias=False,
                                device=device,
                                dtype=dtype)

        self.reset_parameters()

    def reset_parameters(self):
        if hasattr(self, 'lora_A'):
            # initialize A the same way as the default for nn.Linear and B to zero
            nn.init.kaiming_uniform_(self.lora_A.weight, a=math.sqrt(5))
            nn.init.zeros_(self.lora_B.weight)
            #print ("lora weight init {} {}".format(torch.mean(self.lora_A.weight), torch.mean(self.lora_B.weight)))

    def forward(self, x):
        orig_type = x.dtype
        res = super().forward(x)
        x = x.float()
        res += self.lora_B(self.lora_A(
            self.lora_dropout(x))) * self.lora_scaling
        return res.to(orig_type)