File size: 2,551 Bytes
425bbba
 
3f2952a
 
 
 
 
 
 
 
 
 
 
 
425bbba
 
3f2952a
 
425bbba
3f2952a
425bbba
3f2952a
 
 
 
 
 
 
425bbba
3f2952a
425bbba
3f2952a
425bbba
3f2952a
425bbba
3f2952a
425bbba
3f2952a
425bbba
3f2952a
425bbba
3f2952a
425bbba
3f2952a
425bbba
3f2952a
 
 
 
 
 
 
 
 
 
 
 
425bbba
3f2952a
425bbba
3f2952a
 
 
 
 
 
 
 
 
 
 
 
425bbba
 
3f2952a
425bbba
3f2952a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
library_name: transformers
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: results
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# results

This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1181
- Accuracy: 0.9667
- Precision: 0.9687
- Recall: 0.9667
- F1: 0.9666

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.2806        | 0.9895 | 59   | 0.2562          | 0.8833   | 0.8896    | 0.8833 | 0.8824 |
| 0.047         | 1.9958 | 119  | 0.1286          | 0.9583   | 0.9596    | 0.9583 | 0.9584 |
| 0.0946        | 2.9853 | 178  | 0.1196          | 0.9667   | 0.9672    | 0.9667 | 0.9667 |
| 0.0037        | 3.9916 | 238  | 0.1181          | 0.9667   | 0.9687    | 0.9667 | 0.9666 |
| 0.0021        | 4.9979 | 298  | 0.1189          | 0.9667   | 0.9671    | 0.9667 | 0.9666 |
| 0.0039        | 5.9874 | 357  | 0.1515          | 0.9667   | 0.9672    | 0.9667 | 0.9667 |
| 0.0013        | 6.9937 | 417  | 0.1703          | 0.9667   | 0.9667    | 0.9667 | 0.9667 |
| 0.0012        | 8.0    | 477  | 0.1703          | 0.9583   | 0.9585    | 0.9583 | 0.9583 |
| 0.0011        | 8.9895 | 536  | 0.1841          | 0.9667   | 0.9672    | 0.9667 | 0.9667 |
| 0.001         | 9.8952 | 590  | 0.1797          | 0.9667   | 0.9672    | 0.9667 | 0.9667 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1