File size: 10,531 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import pytest
import torch

from mmdet3d.models import draw_heatmap_gaussian
from mmdet3d.models.utils import (filter_outside_objs, get_edge_indices,
                                  get_keypoints, handle_proj_objs)
from mmdet3d.structures import CameraInstance3DBoxes, points_img2cam
from mmdet3d.utils import array_converter


def test_gaussian():
    heatmap = torch.zeros((128, 128))
    ct_int = torch.tensor([64, 64], dtype=torch.int32)
    radius = 2
    draw_heatmap_gaussian(heatmap, ct_int, radius)
    assert torch.isclose(torch.sum(heatmap), torch.tensor(4.3505), atol=1e-3)


def test_array_converter():
    # to torch
    @array_converter(to_torch=True, apply_to=('array_a', 'array_b'))
    def test_func_1(array_a, array_b, container):
        container.append(array_a)
        container.append(array_b)
        return array_a.clone(), array_b.clone()

    np_array_a = np.array([0.0])
    np_array_b = np.array([0.0])
    container = []
    new_array_a, new_array_b = test_func_1(np_array_a, np_array_b, container)

    assert isinstance(new_array_a, np.ndarray)
    assert isinstance(new_array_b, np.ndarray)
    assert isinstance(container[0], torch.Tensor)
    assert isinstance(container[1], torch.Tensor)

    # one to torch and one not
    @array_converter(to_torch=True, apply_to=('array_a', ))
    def test_func_2(array_a, array_b):
        return torch.cat([array_a, array_b])

    with pytest.raises(TypeError):
        _ = test_func_2(np_array_a, np_array_b)

    # wrong template_arg_name_
    @array_converter(
        to_torch=True, apply_to=('array_a', ), template_arg_name_='array_c')
    def test_func_3(array_a, array_b):
        return torch.cat([array_a, array_b])

    with pytest.raises(ValueError):
        _ = test_func_3(np_array_a, np_array_b)

    # wrong apply_to
    @array_converter(to_torch=True, apply_to=('array_a', 'array_c'))
    def test_func_4(array_a, array_b):
        return torch.cat([array_a, array_b])

    with pytest.raises(ValueError):
        _ = test_func_4(np_array_a, np_array_b)

    # to numpy
    @array_converter(to_torch=False, apply_to=('array_a', 'array_b'))
    def test_func_5(array_a, array_b, container):
        container.append(array_a)
        container.append(array_b)
        return array_a.copy(), array_b.copy()

    pt_array_a = torch.tensor([0.0])
    pt_array_b = torch.tensor([0.0])
    container = []
    new_array_a, new_array_b = test_func_5(pt_array_a, pt_array_b, container)

    assert isinstance(container[0], np.ndarray)
    assert isinstance(container[1], np.ndarray)
    assert isinstance(new_array_a, torch.Tensor)
    assert isinstance(new_array_b, torch.Tensor)

    # apply_to = None
    @array_converter(to_torch=False)
    def test_func_6(array_a, array_b, container):
        container.append(array_a)
        container.append(array_b)
        return array_a.clone(), array_b.clone()

    container = []
    new_array_a, new_array_b = test_func_6(pt_array_a, pt_array_b, container)

    assert isinstance(container[0], torch.Tensor)
    assert isinstance(container[1], torch.Tensor)
    assert isinstance(new_array_a, torch.Tensor)
    assert isinstance(new_array_b, torch.Tensor)

    # with default arg
    @array_converter(to_torch=True, apply_to=('array_a', 'array_b'))
    def test_func_7(array_a, container, array_b=np.array([2.])):
        container.append(array_a)
        container.append(array_b)
        return array_a.clone(), array_b.clone()

    container = []
    new_array_a, new_array_b = test_func_7(np_array_a, container)

    assert isinstance(container[0], torch.Tensor)
    assert isinstance(container[1], torch.Tensor)
    assert isinstance(new_array_a, np.ndarray)
    assert isinstance(new_array_b, np.ndarray)
    assert np.allclose(new_array_b, np.array([2.]), 1e-3)

    # override default arg

    container = []
    new_array_a, new_array_b = test_func_7(np_array_a, container,
                                           np.array([4.]))

    assert isinstance(container[0], torch.Tensor)
    assert isinstance(container[1], torch.Tensor)
    assert isinstance(new_array_a, np.ndarray)
    assert np.allclose(new_array_b, np.array([4.]), 1e-3)

    # list arg
    @array_converter(to_torch=True, apply_to=('array_a', 'array_b'))
    def test_func_8(container, array_a, array_b=[2.]):
        container.append(array_a)
        container.append(array_b)
        return array_a.clone(), array_b.clone()

    container = []
    new_array_a, new_array_b = test_func_8(container, [3.])

    assert isinstance(container[0], torch.Tensor)
    assert isinstance(container[1], torch.Tensor)
    assert np.allclose(new_array_a, np.array([3.]), 1e-3)
    assert np.allclose(new_array_b, np.array([2.]), 1e-3)

    # number arg
    @array_converter(to_torch=True, apply_to=('array_a', 'array_b'))
    def test_func_9(container, array_a, array_b=1):
        container.append(array_a)
        container.append(array_b)
        return array_a.clone(), array_b.clone()

    container = []
    new_array_a, new_array_b = test_func_9(container, np_array_a)

    assert isinstance(container[0], torch.FloatTensor)
    assert isinstance(container[1], torch.FloatTensor)
    assert np.allclose(new_array_a, np_array_a, 1e-3)
    assert np.allclose(new_array_b, np.array(1.0), 1e-3)

    # feed kwargs
    container = []
    kwargs = {'array_a': [5.], 'array_b': [6.]}
    new_array_a, new_array_b = test_func_8(container, **kwargs)

    assert isinstance(container[0], torch.Tensor)
    assert isinstance(container[1], torch.Tensor)
    assert np.allclose(new_array_a, np.array([5.]), 1e-3)
    assert np.allclose(new_array_b, np.array([6.]), 1e-3)

    # feed args and kwargs
    container = []
    kwargs = {'array_b': [7.]}
    args = (container, [8.])
    new_array_a, new_array_b = test_func_8(*args, **kwargs)

    assert isinstance(container[0], torch.Tensor)
    assert isinstance(container[1], torch.Tensor)
    assert np.allclose(new_array_a, np.array([8.]), 1e-3)
    assert np.allclose(new_array_b, np.array([7.]), 1e-3)

    # wrong template arg type
    with pytest.raises(TypeError):
        new_array_a, new_array_b = test_func_9(container, 3 + 4j)

    with pytest.raises(TypeError):
        new_array_a, new_array_b = test_func_9(container, {})

    # invalid template arg list
    with pytest.raises((TypeError, ValueError)):
        new_array_a, new_array_b = test_func_9(container,
                                               [True, np.array([3.0])])


def test_points_img2cam():
    points = torch.tensor([[0.5764, 0.9109, 0.7576], [0.6656, 0.5498, 0.9813]])
    cam2img = torch.tensor([[700., 0., 450., 0.], [0., 700., 200., 0.],
                            [0., 0., 1., 0.]])
    xyzs = points_img2cam(points, cam2img)
    expected_xyzs = torch.tensor([[-0.4864, -0.2155, 0.7576],
                                  [-0.6299, -0.2796, 0.9813]])
    assert torch.allclose(xyzs, expected_xyzs, atol=1e-3)


def test_generate_edge_indices():

    input_metas = [
        dict(img_shape=(110, 110), pad_shape=(128, 128)),
        dict(img_shape=(98, 110), pad_shape=(128, 128))
    ]
    downsample_ratio = 4
    edge_indices_list = get_edge_indices(input_metas, downsample_ratio)

    assert edge_indices_list[0].shape[0] == 108
    assert edge_indices_list[1].shape[0] == 102


def test_truncation_hanlde():

    centers2d_list = [
        torch.tensor([[-99.86, 199.45], [499.50, 399.20], [201.20, 99.86]])
    ]

    gt_bboxes_list = [
        torch.tensor([[0.25, 99.8, 99.8, 199.6], [300.2, 250.1, 399.8, 299.6],
                      [100.2, 20.1, 300.8, 180.7]])
    ]
    img_metas = [dict(img_shape=[300, 400])]
    centers2d_target_list, offsets2d_list, trunc_mask_list = \
        handle_proj_objs(centers2d_list, gt_bboxes_list, img_metas)

    centers2d_target = torch.tensor([[0., 166.30435501], [379.03437877, 299.],
                                     [201.2, 99.86]])

    offsets2d = torch.tensor([[-99.86, 33.45], [120.5, 100.2], [0.2, -0.14]])
    trunc_mask = torch.tensor([True, True, False])

    assert torch.allclose(centers2d_target_list[0], centers2d_target)
    assert torch.allclose(offsets2d_list[0], offsets2d, atol=1e-4)
    assert torch.all(trunc_mask_list[0] == trunc_mask)
    assert torch.allclose(
        centers2d_target_list[0].round().int() + offsets2d_list[0],
        centers2d_list[0])


def test_filter_outside_objs():

    centers2d_list = [
        torch.tensor([[-99.86, 199.45], [499.50, 399.20], [201.20, 99.86]]),
        torch.tensor([[-47.86, 199.45], [410.50, 399.20], [401.20, 349.86]])
    ]
    gt_bboxes_list = [
        torch.rand([3, 4], dtype=torch.float32),
        torch.rand([3, 4], dtype=torch.float32)
    ]
    gt_bboxes_3d_list = [
        CameraInstance3DBoxes(torch.rand([3, 7]), box_dim=7),
        CameraInstance3DBoxes(torch.rand([3, 7]), box_dim=7)
    ]
    gt_labels_list = [torch.tensor([0, 1, 2]), torch.tensor([2, 0, 0])]
    gt_labels_3d_list = [torch.tensor([0, 1, 2]), torch.tensor([2, 0, 0])]
    img_metas = [dict(img_shape=[300, 400]), dict(img_shape=[500, 450])]
    filter_outside_objs(gt_bboxes_list, gt_labels_list, gt_bboxes_3d_list,
                        gt_labels_3d_list, centers2d_list, img_metas)

    assert len(centers2d_list[0]) == len(gt_bboxes_3d_list[0]) == \
        len(gt_bboxes_list[0]) == len(gt_labels_3d_list[0]) == \
        len(gt_labels_list[0]) == 1

    assert len(centers2d_list[1]) == len(gt_bboxes_3d_list[1]) == \
        len(gt_bboxes_list[1]) == len(gt_labels_3d_list[1]) == \
        len(gt_labels_list[1]) == 2


def test_generate_keypoints():

    centers2d_list = [
        torch.tensor([[-99.86, 199.45], [499.50, 399.20], [201.20, 99.86]]),
        torch.tensor([[-47.86, 199.45], [410.50, 399.20], [401.20, 349.86]])
    ]
    gt_bboxes_3d_list = [
        CameraInstance3DBoxes(torch.rand([3, 7])),
        CameraInstance3DBoxes(torch.rand([3, 7]))
    ]
    img_metas = [
        dict(
            cam2img=[[1260.8474446004698, 0.0, 807.968244525554, 40.1111],
                     [0.0, 1260.8474446004698, 495.3344268742088, 2.34422],
                     [0.0, 0.0, 1.0, 0.00333333], [0.0, 0.0, 0.0, 1.0]],
            img_shape=(300, 400)) for i in range(2)
    ]

    keypoints2d_list, keypoints_depth_mask_list = \
        get_keypoints(gt_bboxes_3d_list, centers2d_list, img_metas)

    assert keypoints2d_list[0].shape == (3, 10, 3)
    assert keypoints_depth_mask_list[0].shape == (3, 3)